题目:
解题思路:
这题是很久以前做过的一道题,重新拿出来复习下排列组合等相关知识。
排列:从给定个数的元素中取出指定个数的元素进行排序
从n个不同元素中取出m个元素进行排列
计算公式:
组合:从给定个数的元素中仅仅取出指定个数的元素,不考虑排序
从n个不同元素中取出m个元素进行组合
计算公式:
错排:把给定个数的元素进行排序,使其都不在原来的位置上
把n个元素进行错排
计算公式:
公式由来:假设有n个元素,有 D(n) 种错排方式,我们取出其中一个元素a,那么有 (n-1) 种放法,分两种情况:
第一种:将a放置在另一个位置的元素放到a这个位置,即这两个元素交换位置,那么还剩下 (n-2) 个元素要错排,所以错排放式为 (n-1)*D(n-2)。
第二种:将a放置在另一个位置的元素不放到a位置,即将剩下的 (n-1) 个元素进行错排,所以错排方式为 (n-1)*D(n-1)。
由此得出递推公式:D(n)=(n-1)*[D(n-1)+D(n-2)]
既然搞懂这三个概念后,那么这道题就很简单了,显然M个新郎找错新娘,那么就有M对新婚夫妇是错误的,即在N中组合M对,又因为M对中新郎不能找到正确的新娘,即不能回到自己原来的位置,所以对M个新郎进行错排。
代码演示:
#include<iostream>
using namespace std;
typedef long long int type;
type s[21];
type zuhe(int n,int m)
{
type sum1=1,sum2=1;
for(int i=n-m+1;i<=n;i++)
{
sum1=sum1*i;
}
for(int i=2;i<=m;i++)
{
sum2=sum2*i;
}
return sum1/sum2;
}
void cuopai()
{
s[1]=0;
s[2]=1;
for(int i=3;i<21;i++)
{
s[i]=(i-1)*(s[i-2]+s[i-1]);
}
}
int main()
{
cuopai();
int T;
cin>>T;
while(T--)
{
int n,m;
cin>>n>>m;
cout<<zuhe(n,m)*s[m]<<endl;
}
return 0;
}