中国剩余定理是一种用于求解诸如
形式的同余方程组的最小非负整数解x的定理,其中,a1,a2,…,an两两互质。
解法:
大佬博客
令
M=a1a2…an
Mi= M / ai(1<=i<=n)
Mi ti=1(mod ai),ti为Mi在模ai下的逆元。
因为Mi与ai一定互质,但ai不一定为质数,可以用拓展欧几里得求逆元,不能用费马小定理求。
由此构造一个解 x0= b1 M1 t1+ b2 M2 t2+…+bn Mn tn;任意解即为x=x0+k*M,最小正整数解为x%M。
模板题:洛谷P1495
题目链接
code:
#include <algorithm>
#include <cmath>
#include <cstdio>
#include <cstring>
#include <iostream>
#include <map>
#include <queue>
#include <set>
#include <string>
#define debug(x) cout << #x << ":" << x << endl;
#define bug cout << "********" << endl;
#define ios ios::sync_with_stdio(false), cin.tie(0), cout.tie(0);
#define fi first
#define se second
using namespace std;
typedef long long ll;
const double eps = 1e-8;
const int inf = 0x3f3f3f3f;
const ll INF = 0x3f3f3f3f3f3f3f3f;
const int mod = 1e9 + 7;
const int maxn = 2e5 + 10;
int m[maxn], a[maxn];
ll ret = 1;
int n;
void exgcd(ll a,ll b,ll &x,ll &y)
{
if(!b){
x = 1, y = 0;
return;
}
exgcd(b, a % b, x, y);
ll t = x;
x = y, y = t - (a / b) * y;
}
int main()
{
ll ans = 0;
scanf("%d", &n);
for (int i = 1; i <= n;i++){
scanf("%d%d", &m[i], &a[i]);
ret = ret * m[i];
}
for (int i = 1; i <= n;i++){
ll s = ret / m[i];
ll x = 0, y = 0;
exgcd(s, m[i], x, y);
if(x<0)
x += m[i];
ans += s * x * a[i];
}
ans = ans % ret;
printf("%lld\n", ans);
return 0;
}