中国剩余定理+模板

中国剩余定理是一种用于求解诸如

形式的同余方程组的最小非负整数解x的定理,其中,a1,a2,…,an两两互质。
解法:
大佬博客

M=a1a2an
Mi= M / ai(1<=i<=n)
Mi ti=1(mod ai),ti为Mi在模ai下的逆元。
因为Mi与ai一定互质,但ai不一定为质数,可以用拓展欧几里得求逆元,不能用费马小定理求。
由此构造一个解 x0= b1 M1 t1+ b2 M2 t2+…+bn Mn tn;任意解即为x=x0+k*M,最小正整数解为x%M。
模板题:洛谷P1495
题目链接
code:

#include <algorithm>
#include <cmath>
#include <cstdio>
#include <cstring>
#include <iostream>
#include <map>
#include <queue>
#include <set>
#include <string>
#define debug(x) cout << #x << ":" << x << endl;
#define bug cout << "********" << endl;
#define ios ios::sync_with_stdio(false), cin.tie(0), cout.tie(0);
#define fi first
#define se second
using namespace std;
typedef long long ll;
const double eps = 1e-8;
const int inf = 0x3f3f3f3f;
const ll INF = 0x3f3f3f3f3f3f3f3f;
const int mod = 1e9 + 7;
const int maxn = 2e5 + 10;

int m[maxn], a[maxn];
ll ret = 1;
int n;

void exgcd(ll a,ll b,ll &x,ll &y)
{
    if(!b){
        x = 1, y = 0;
        return;
    }
    exgcd(b, a % b, x, y);
    ll t = x;
    x = y, y = t - (a / b) * y;
}

int main()
{
    ll ans = 0;
    scanf("%d", &n);
    for (int i = 1; i <= n;i++){
        scanf("%d%d", &m[i], &a[i]);
        ret = ret * m[i];
    }
    for (int i = 1; i <= n;i++){
        ll s = ret / m[i];
        ll x = 0, y = 0;
        exgcd(s, m[i], x, y);
        if(x<0)
            x += m[i];
        ans += s * x * a[i];
    }
    ans = ans % ret;
    printf("%lld\n", ans);
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值