【高校科研前沿】华东师大白开旭教授博士研究生李珂为一作在RSE发表团队最新成果:基于波谱特征优化的全球大气甲烷智能反演技术

本文介绍了一种新的大气甲烷浓度反演方法UNMAMO,通过结合TROPOMI和GOSAT卫星数据,利用机器学习和多目标规划技术,提高了反演效率和准确性。与传统全物理方法相比,UNMAMO在减少地表因素干扰、提高反演精度和覆盖范围方面表现出显著优势,为全球甲烷排放源监测提供了有力工具。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

文章简介

论文名称Developing unbiased estimation of atmospheric methane via machine learning and multiobjective programming based on TROPOMI and GOSAT data(基于TROPOMI和GOSAT数据,通过机器学习和多目标规划实现大气甲烷的无偏估计)

第一作者及通讯作者:李珂(博士研究生);白开旭(教授)

第一作者及通讯作者单位:华东师范大学地理科学学院

文章发表期刊:Remote Sensing of Environment》(中科院1区Top期刊|最新影响因子:13.5)

期刊平均审稿速度:3.3个月

研究内容

1.导读

依托卫星遥感平台实现大气温室气体浓度的快速精准监测,对制定减排目标和落实减排成效具有重要的支撑作用和现实意义。温室气体遥感反演多采用基于辐射传输在线模拟的全物理最优估计算法,其

### 使用 Level 1B 数据进行甲烷演的方法 Level 1B (L1B) 数据通常表示经过辐射校正后的传感器数据,保留了几何位置的信息但尚未完全处理到地理坐标系中。为了利用 L1B 数据进行大气成分(如甲烷)的演,需要系列复杂的预处理和建模步骤。 #### 预处理阶段 在使用 L1B 数据之前,需将其转换为适合进步分析的形式: 1. **几何校正** 将原始观测数据从探测器的空间参考框架映射至地球表面的标准地理坐标系。这步骤依赖于辅助文件中的姿态角、轨道参数等信息[^1]。 2. **大气校正** 去除由大气散射和吸收引起的干扰效应,得到地表射率或辐亮度。此过程可能涉及模拟不同条件下大气传输特性模型的结果[^2]。 3. **光谱定标** 对各波段响应函数实施精确调整,确保测量值能够准确映实际物理量级变化情况。这是实现高质量定量遥感的基础之[^3]。 #### 演方法概述 针对特定气体浓度估计问题,常用的技路线包括但不限于以下几种: - **直接比较法** 通过查找已知标准曲线来匹配当前场景下的特征信号强度分布模式;然而这种方法受限较多,尤其是在复杂背景下难以取得理想效果。 - **最小二乘拟合法** 构建目标分子吸收线廓形理论表达式并与实测光谱序列逐比对寻找最佳吻合点位。该方式灵活性较好但也增加了计算负担。 - **神经网络学习策略** 借助大量训练样本教导人工智能系统识别各类物质对应的独特指纹图案从而快速预测未知输入所属类别及其含量水平。尽管效率很高但仍存在泛化能力不足等问题待解决。 以下是采用 Python 实现简单版最小二乘拟合法的个例子: ```python import numpy as np from scipy.optimize import least_squares def methane_absorption_model(wavelengths, params): """定义甲烷吸收模型""" amplitude, center, width = params return amplitude * np.exp(-((wavelengths - center)**2 / (2 * width**2))) # 示例:假设我们有如下实验数据 observed_wavelengths = np.array([...]) # 波长数组 observed_intensities = np.array([...]) # 强度读数 initial_guess = [1.0, 1.65e-6, 1e-7] # 初始猜测参数列表 result = least_squares( lambda p: observed_intensities - methane_absorption_model(observed_wavelengths, p), initial_guess) estimated_parameters = result.x print(f"Estimated parameters: {estimated_parameters}") ``` 上述脚本展示了如何设置并求解优化问题以找到最能描述给定光谱特性的数学方程组系数集合。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值