文章简介
论文名称:Developing unbiased estimation of atmospheric methane via machine learning and multiobjective programming based on TROPOMI and GOSAT data(基于TROPOMI和GOSAT数据,通过机器学习和多目标规划实现大气甲烷的无偏估计)
第一作者及通讯作者:李珂(博士研究生);白开旭(教授)
第一作者及通讯作者单位:华东师范大学地理科学学院
文章发表期刊:《Remote Sensing of Environment》(中科院1区Top期刊|最新影响因子:13.5)
期刊平均审稿速度:3.3个月
研究内容
1.导读
依托卫星遥感平台实现大气温室气体浓度的快速精准监测,对制定减排目标和落实减排成效具有重要的支撑作用和现实意义。温室气体遥感反演多采用基于辐射传输在线模拟的全物理最优估计算法,其