商业银行对中小微企业的信贷决策研究
摘要
在推动自主创业的当下,中小微企业的现状已成为大众的聚焦点,而中小微企业融资问题作为经济发展的特殊问题,已引起了人们的普遍关注。但中小微企业在债务融资方面仍处于劣势位置,尤其银行和企业的信息倾斜导致其风险进一步提高。如何防范中小微企业贷款风险,同时使企业和银行形成双赢局面,并优化国家自主创业环境,将成为商业银行的重要课题。
针对问题一:利用附件1所给的销售流水,通过Excel进行数据清洗,筛选去除其中无效数据,随后根据表中所给数据通过聚类分析将企业分为电子、医药、科技、设计等九类,选取其中的90个企业数据作为建模对象,其余33个企业数据用来验证模型可信度。首先将分类后企业的数据利用Matlab编程分别计算出影响企业风险程度的多个因素如总收入、总利润、交易额、资金流动性、年销售收入增长率、年利润增长率数值,将企业是否违约定义为0-1变量,利用Excel和Spss软件对该变量进行Logistic模型建模并检验,得出各个因素对于企业信贷是否违约所占影响比重,写出行业违约概率的回归方程。确定相应额度,利用Lingo在满足银行收益达到最大化的条件下,建立收益与违约概率以及利率的非线性规划模型,根据行业违约概率与信誉等级的对应关系,确定以行业、贷款额度、利率、期限为内容的产品为导向的标准化定价策略。
针对问题二:首先利用问题一确立的行业违约概率的回归方程,得出302家企业的违约风险概率。根据评级指标判断企业是否违约,固定年度信贷总额后运用Lingo确定该行业的贷款额度、期限以及企业期望贷款额度,将1亿元根据问题一中得出的行业占比,对不同行业进行额度配置,得到银行在信贷总额固定情况下的九类产品。
针对问题三:参照各行业在新冠疫情下各行业活跃度的损失率状况,考虑突发因素在行业内对进销项交易额的损失率和对交易时间的限制,利用不同的损失率来反映各行业生产遭受的影响,对应特定的银行额度、利润、期限。利用处理后的附件2中各行业企业的流水数据去除损失得到修复数据,并将数据进行与问题一相同软件操作,得出各行业在环境因素影响下新的回归方程,从而对应企业新的信贷风险与评级等级二得到的银行收益最大化分析回归方程,对应新局势下银行的产品策略。
关键词:信贷风险评价;指标体系;逻辑回归模型;聚类分析;判别分析