相干解调和非相干

相干解调和非相干

相干载波:和载频相干 同频同相

相干解调

需要相干载波的参与

所谓相干,泛泛地说就是相互干扰;
相干解调是指利用乘法器,输入一路与载频相干(同频同相)的参考信号与载频相乘。
比如原始信号 A 与载频 cos(ωt + θ) 调制后得到信号 Acos(ωt + θ);
解调时引入相干(同频同相)的参考信号 cos(ωt + θ),则得到:
Acos(ωt+θ)cos(ωt+θ)
利用积化和差公式可以得到
A1/2[cos(ωt+θ+ωt+θ)+cos(ωt+θ-ωt-θ)]
=A1/2[cos(2ωt+2θ)+cos(0)]
=A/2*[cos(2ωt+2θ)+1]
=A/2+A/2cos(2ωt+2θ)
利用低通滤波器将高频信号cos(2ωt+2θ)滤除,即得原始信号 A。
因此相干解调需要接收机和载波同步;
而非相干解调不使用乘法器,不需要接收机和载波同步。

非相干解调(包络检波):不需要相干载波的参与

缺点:非相干解调会有门限效应,输出信噪低到一定值的时候会出现急剧恶化。相干解调实现起来比较复杂

### MATLAB 中 FM 信号的相干解调非相干解调 #### 相干解调 在MATLAB中,对于FM信号的相干解调主要依赖于锁相环(PLL)或其他同步机制来恢复载波频率。这种方法通常较为复杂,因为需要精确跟踪输入信号中的瞬时频率变化。 下面是一个简单的基于希尔伯特变换的相干解调例子: ```matlab % 参数设定 Fs = 1e6; % 采样率 Fc = 100e3; % 载波频率 Fm = 5e3; % 消息信号频率 kf = 2 * pi * Fm / Fs; time = 0:1/Fs:0.1; % 构建消息信号与已调制信号 message_signal = cos(2*pi*Fm*time); modulated_signal = cos(2*pi*Fc*time + kf*cumsum(message_signal)); % 使用hilbert函数获取解析信号并计算其相位角 analytic_signal = hilbert(modulated_signal); phase_angle = unwrap(angle(analytic_signal)); % 计算瞬时频率作为解调后的输出 instantaneous_frequency = diff(phase_angle)/(2*pi)*(Fs/(length(time)-1)); demodulated_signal = instantaneous_frequency-mean(instantaneous_frequency)+mean(message_signal); figure; subplot(2,1,1),plot(time,message_signal,'r'),title('Original Message Signal'); subplot(2,1,2),plot(time(2:end),demodulated_signal,'g'),title('Demodulated Signal using Coherent Detection'); ``` 此代码片段展示了通过Hilbert变换得到解析信号后提取相位信息再转换成瞬时频率从而实现相干检测的过程[^1]。 #### 非相干解调 相比之下,非相干解调不需要重建原始载波即可工作。最常用的方法之一是过零检测法或鉴频器方法,在这里采用的是后者——即直接测量相邻样本间角度差的变化速率来进行解调操作。 以下是使用`diff()`配合反正切运算完成非相干解调的一个实例: ```matlab % 继续沿用上面定义好的变量... % 对已调制信号应用arctan()求得相位差异 phi_diff = diff(atan2(imag(hilbert(modulated_signal)), real(hilbert(modulated_signal)))); % 将相位差转化为线性比例表示形式 frequency_deviation = phi_diff ./ (2*pi*(1:length(phi_diff))/Fs); % 平滑处理去除高频分量影响 smoothed_fd = smooth(frequency_deviation, 'moving', 5); % 展示结果对比图 figure; subplot(2,1,1),plot(time,message_signal,'r'),title('Original Message Signal'); subplot(2,1,2),plot(time(2:end),smoothed_fd,'b'),title('Demodulated Signal using Non-Coherent Detection'); ``` 上述程序先通过对复数表达式的反余弦获得两者的相对夹角,接着将其映射回实际物理意义下的频率偏移量,并经过简单滤波以减少噪声干扰的影响[^2]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值