kmeans歌词聚类

文章介绍了如何使用Python的sklearn库对歌词进行KMeans聚类,主要步骤包括引入必要的库如numpy、pandas和sklearn,读取数据,使用TfidfVectorizer进行文本向量化,然后应用KMeans进行聚类,最后将聚类标签映射为具体的音乐类型。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、使用工具包

numpy、pandas、sklearn

二、使用步骤

1.引入库

代码如下(示例):

import pandas as pd
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.cluster import KMeans
import numpy as np

2.读入数据

代码如下(示例):

data = pd.read_csv("output.csv",encoding="utf-8")
data

数据处理部分已省略

3.文本向量化

代码如下(示例):

vectorizer = TfidfVectorizer()
X = vectorizer.fit_transform(music)

4.kmeans聚类

代码如下(示例):

kmeans = KMeans(n_clusters=5)
kmeans.fit(X)
names = data['title']
pred = kmeans.labels_
label_map = {0: '经典老歌', 1: '流行', 2: '伤感情歌',  3: '网络热歌', 4: '民谣'}

5.完整代码

代码如下(示例):

def pred(dataX):
    data = pd.read_csv("output.csv",encoding="utf-8")
    music = data['text']
    music = music.apply(remove)
    vectorizer = TfidfVectorizer()
    X = vectorizer.fit_transform(music)
    kmeans = KMeans(n_clusters=5)
    kmeans.fit(X)
    names = data['title']
    label_map = {0: '经典老歌', 1: '流行', 2: '伤感情歌',  3: '网络热歌', 4: '民谣'}
    dataX = dataX.replace("\n","")
    dataX = vectorizer.transform([dataX])
#     return kmeans.predict(dataX)
    return label_map[kmeans.predict(dataX)[0]]

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Anonymous&

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值