自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(11)
  • 收藏
  • 关注

原创 白鲸算法(BWO)优化VMD分解时间序列实例+源代码

白鲸优化算法解决变分模态分解的参数选取问题!

2024-01-09 17:18:00 832 2

原创 利用pyecharts合并地图的几个区域

1、获取想要的json地图:为了合并地图上的区域,pyecharts自带的地图不能用了,所以需要找到原始json代码进行编辑阿里云数据可视化平台2、下载json文件用记事本打开,添加area字段【自定义分区】3、利用mapshaper添加链接描述进行地图编辑点击控制台,利用dissolve函数重新分区4、对导出文件再次修改pyecharts只能识别name,所以把json里的area改成name。

2023-08-18 18:35:17 889 1

原创 2022美赛C题数据处理

只是做个存档对于一列日期中有跳过的部分,我们希望把这些跳过的日期重新插入表格,并且,对应日期的数值为空值,可以在excel的VBC中输入如下代码:Sub aa() Dim Dt As Date, n As Integer, nR As Long nR = 2 '第一个日期所在的行 Do While Range("A" & nR + 1).Text <> "" n = DateDiff("d", Range("A" & nR).T

2022-03-03 20:22:06 1740

原创 Kaggle从零入门学习笔记-8.piplines(管道)

上一篇:7.分类变量数据的预处理十分复杂, 所以我们利用管道可以把预处理和模型建立联合起来,使之简化。首先还是把数据处理一下(这一步可以略过了)import pandas as pdfrom sklearn.model_selection import train_test_split# Read the datadata = pd.read_csv('../input/melbourne-housing-snapshot/melb_data.csv')# Separate target

2021-09-21 13:12:54 202

原创 Kaggle从零入门学习笔记-7.Categorical Variables(分类变量)

上一篇:6.缺失值当有一个人问你吃早餐的频率,可以回答“从不”“经常”“偶尔”等,那么这些怎么转换成数字?这就是分类变量的作用。要处理这些文字信息,有三种方法先找到分类变量# Get list of categorical variabless = (X_train.dtypes == 'object')object_cols = list(s[s].index)print("Categorical variables:")print(object_cols)定义一个函数from sk

2021-09-21 12:30:14 770

原创 Kaggle从零入门学习笔记-6.Missing values(缺失值)

上一篇:5.随机森林缺失值的存在会导致误差,什么是缺失值呢?在一个dataframe里面,因为调查的时候由于失误或部分调查对象没有提供导致那一栏的数据为NaN,缺失值在拟合的时候需要进行预处理。处理缺失值有如下三种方法:一.直接删除包含缺失值的数据列这种方法是非常简单的,主要用于这一列缺失值很多的情况# Get names of columns with missing valuescols_with_missing = [col for col in X_train.columns

2021-09-21 11:54:13 747

原创 Kaggle从零入门学习笔记-5.RandomForest(随机森林)

上一篇 4.过拟合和欠拟合我们先看看基于随机森林模型得到的MAE:from sklearn.ensemble import RandomForestRegressorfrom sklearn.metrics import mean_absolute_errorforest_model = RandomForestRegressor(random_state=1)forest_model.fit(train_X, train_y)melb_preds = forest_model.predict

2021-09-21 10:43:59 345

原创 Kaggle从零入门学习笔记-4.Underfitting&overfitting(过拟合和欠拟合)

上一篇 3.数据验证现在我们已经学习了如何检测一个模型的准确性,接下来就可以根据不同的模型得到的结果进行一个选择。一个决策树可以有很多枝叶,当枝叶非常多,枝叶下面的house就会变少,预测基于的house少,那么它就只适用于样本内数据,对于新数据来说没有太多适配性,这就叫做overfitting;然而,当一个决策树分的枝叶很少 ,它对于训练集的拟合效果也不是很好,这就叫做underfitting现在,我们用之前的例子调整参数,试着找到一个最适配的决策树模型。from sklearn.metrics

2021-09-21 10:30:38 309

原创 Kaggle从零入门学习笔记-3.数据验证

上一篇 2.第一个机器学习模型建立起模型之后需要验证其准确性Mean Absolute Error (also called MAE)绝对误差是度量准确性的一个因素error=actual−predicted1.首先前面的导入这些代码都说过了不再赘述# Data Loading Code Hidden Hereimport pandas as pd# Load datamelbourne_file_path = '../input/melbourne-housing-snapshot/m

2021-09-21 00:07:57 633

原创 Kaggle从零入门学习笔记-2.第一个机器学习模型-决策树

第一篇在1.读取数据我主要是记录代码及实操的,有什么问题欢迎评论,我一般都在线。同时欢迎大神指导1.导入数据和SETUP# Code you have previously used to load dataimport pandas as pd# Path of the file to readiowa_file_path = '../input/home-data-for-ml-course/train.csv'home_data = pd.read_csv(iowa_file_pat

2021-09-20 20:42:15 481 1

原创 Kaggle从零入门学习笔记-1.读取数据

本人完全小白,这篇文章仅作为一个学习记录,参考的kaggle官网教程。如有大神路过欢迎指教。话不多说直接开始,进入网站之后,可以打开一个自己的notebook,因为是新手暂时不用自己导入数据,可以用它现成的,比赛的话也是它会导入好的。`# Set up code checkingfrom learntools.core import binderbinder.bind(globals())from learntools.machine_learning.ex2 import *print(“Se

2021-09-20 20:19:21 2698 1

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除