- 博客(15)
- 收藏
- 关注
原创 处理器架构CISC、RISC
处理器架构 / 指令集架构 / 架构”指的是处理器的设计理念和实现方式,它定义了处理器的指令集、执行模型、寄存器集合、内存管理方式等核心特性。不同的架构会导致处理器在硬件设计、性能表现、功耗、软件兼容性等方面存在差异。处理器”架构“是指CPU的设计蓝图,它定义了处理器的指令集、执行方式、寄存器和内存管理等关键特性。不同的架构影响硬件设计、性能、功耗和软件兼容性。指令集架构可以理解为一个抽象层,该抽象层构成处理器底层硬件与运行于其上的软件之间的桥梁与接口。
2024-12-05 17:04:35
490
原创 conda常用指令
操作命令ENV_NAME python=3.8.8 ENV_NAMEPACKAGE_NAMEPACKAGE_NAMEENV_NAME-i https://pypi.tuna.tsinghua.edu.cn/simple未完...
2024-09-11 16:12:44
277
原创 FPGA开发——(1)串口通信UART
异步收发传输器(Universal Asynchronous Receiver/Transmitter)简称UART。在发送数据时,将并行数据转换为串行数据来传输;在接收数据时,将接收的串行数据转换为并行数据。UART和SPI、IIC不同,UART是异步通信接口,异步通信的接收方不知道数据什么时候送达,因此发送方和接收方要约定传输的波特率。
2024-03-25 11:18:17
986
原创 C语言-指针教学
1)令“一个字节”为最小的内存单元,为了管理每个内存单元,给每个内存单元编号。3)把编号称为地址,因为通过编号可以轻易找到内存单元。(这里提到的内存是RAM,运行内存)2)1 KB = 1024 字节。(编号 = 地址 = 指针)
2024-03-06 10:32:35
455
原创 地址线与数据线(自用)
原视频见https://www.bilibili.com/video/BV1YN411W7W2/?如果令1个字等于4个字节,那就相当于4“行”为一个字(表明字是可以自由定义为多少个字节的)。数据线:将存储单元里的数据取出来。此时需要4位来访问这0-15个序号。地址线:确定存储单元所在位置。
2024-02-29 10:10:39
831
1
原创 Vivado使用IP核创建ILA调试环境
1.在IP核中找到ILA2.General Options(常规选项)主要有如下三部分:1.Monitor Type:ILA 探针接口类型设置,ILA 探针接口有两种类型,Native 与 AXI。Native 是普通接口模式;AXI 是 AXI 接口模式,用于调试 AXI 接口信号。Native 通常是用来测量电平或一定位宽信号,AXI 就比较明显了直接测量 AXI 总线的信号。这里主要测试 led 信号,所以只需要用 Native 模式。
2024-01-23 18:20:46
6652
1
原创 单片机和ZYNQ开发中,C语言指针介绍
/定义一个指针,指针指向数组的首地址。如char *p_str = “This is a test!p_str操作就是对"This is a test!p_str就是"This is a test!指针:其值指向地址的变量或常量,核心是地址!&p_str :取p_str 指针的地址。*p_str:取p_str 地址的值,
2024-01-20 00:25:24
423
原创 基于anaconda配置新的python虚拟环境
如:conda create -n Vedio_segmentation python==3.8.16。1.创建环境:conda create -n env_name pythonn=x.x。如:conda activate Vedio_segmentation。3.激活环境:conda activate env_name。2.输入conda env list可以查看已配置好的环境。输入conda list可以查看该环境的库有哪些。等待一会后,环境创建成功。
2024-01-09 11:26:07
568
1
原创 李沐深度学习-09 Softmax 回归
当 y = 1 时,交叉熵损失函数惩罚模型预测结果接近 0 的情况,当 y = 0 时,交叉熵损失函数惩罚模型预测结果接近 1 的情况。在分类任务中,模型的输出是一个离散的类别。具体而言,当输出的模型结果是一个概率向量或得分向量时,我们可以使用 argmax 函数找到具有最大概率或最高得分的类别的索引,作为最终的预测结果。分类的时候,我们不关心它们之间的实际值,关心的是正确类别的置信度Oy是不是足够大。在深度学习中,回归和分类是两种常见的任务类型,它们的区别主要在于预测的对象和输出的形式。
2023-08-27 21:10:59
275
1
原创 深度学习的一些基本概念
在模型经过训练和调优后,我们使用独立的测试集来测试模型的泛化能力和性能。测试集是在模型训练和验证过程中没有使用过的数据,用于预测模型在现实情况下的表现。2.验证集(Validation Set):验证集是用于模型选择和调优的数据集。在训练过程中,我们可以使用验证集评估模型的性能,并根据其效果进行模型调整和超参数调优。在深度学习中,通过使用训练集来调整模型的权重和参数,使其能够适应数据并学习数据的模式和特征。一、在深度学习中,通常将数据集划分为训练集、验证集和测试集,以进行模型的训练、调优和评估。
2023-08-25 19:47:19
388
1
原创 李沐深度学习-08 线性回归
(深度学习的显示解是指通过训练一个深度神经网络来学习输入数据的隐含模式或规律,并使用该模型进行预测或分类任务的过程。在深度学习中,网络通过多层的神经元进行信息传递和特征提取,最终输出一个预测或分类结果。输出的维度是1,每一个箭头表示一个权重w(i)。当一个模型没有显示解的时候,可以随机挑选一个初始值w0,在接下来的时候不断更新w0来接近最优解。线性回归是唯一一个有最优解w,b的模型,剩下的模型比较复杂,可能求不出最优解。我们的目标是找到一个最优解w,b让损失函数最小化。
2023-08-22 18:45:39
116
1
原创 jupyter训练模型后C盘内存减少的问题
跟着沐神的视频进行了jupyter模型训练。但是模型训练完毕后,发现C盘的存储容量减少了,这是因为代码运行的内存没有释放。点击这里即可完成内存释放。
2023-07-09 20:12:10
2156
3
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人