ARL灯塔魔改,自动化资产搜集+漏扫+推送+1W加指纹

0x01 前言

灯塔删库了,没有灯塔我该怎么活,在搭建这一套自动化资产搜集+漏扫体系之前,我一般是使用网络搜索引擎(fofa、zoomeye、hunter等)和C段ip进行资产搜集,然后批量指纹扫描工具(Ehole、Glass等)进行指纹识别,使用xray、nuclei进行批量漏扫。按照之前使用的打点流程存在缺陷,总觉得不太好用,打算强化一下灯塔

0x02 准备工作


一台或两台linux服务器:
一台:
配置:64位+2核4G+带宽100Mbps
两台:
服务器A:64位+2核4G (灯塔最低配置要求)
服务器B:100Mbps
ps:我这里使用的两台vps,一台国内阿里云搭建灯塔系统,一台国外vps作为漏扫服务器,两台
vps使用的操作系统均为centos
灯塔ARL【资产收集】:https://github.com/TophantTechnology/ARL
httpx 【存活检测】:https://github.com/projectdiscovery/httpx
anew【过滤重复】:https://github.com/tomnomnom/anew
nuclei【漏洞扫描】:https://github.com/projectdiscovery/nuclei
python3.10【推送钉钉】:推荐使用3.7,这里3.10太高了导致openssl需要安装最新版,涉及重新
编译openssl、python3,比较麻烦。

0x03 工具安装配置

3.1 灯塔ARL

3.1.1 安装docker环境

安装一些依赖
sudo yum install -y yum-utils device-mapper-persistent-data lvm2 wget
下载repo文件
wget -O /etc/yum.repos.d/docker-ce.repo
https://download.docker.com/linux/centos/docker-ce.repo
把软件仓库地址替换为 TUNA:
sudo sed -i 's+download.docker.com+mirrors.tuna.tsinghua.edu.cn/docker-ce+'
/etc/yum.repos.d/docker-ce.repo
安装
sudo yum makecache fast
sudo yum install docker-ce
3.1.2 docker compose 安装

先安装pip,python3进行安装
curl https://bootstrap.pypa.io/get-pip.py -o get-pip.py
python3 get-pip.py
pip3 install -i https://pypi.tuna.tsinghua.edu.cn/simple docker-compose
3.1.3 ARL灯塔安装
这里我使用的是基于斗象灯塔ARL修改后的版本。相比原版,增加了OneForAll、中央数据库,修改了altDns
项目地址:https://github.com/ki9mu/ARL-plus-docker
ps:2.8.0版本以后无oneforall,所以用的2.7
使用wegt,或者本地下载上传到服务器后进行解压,下面是2.7的压缩包地址

https://github.com/ki9mu/ARL-plus-docker/archive/refs/tags/v2.7.1.zip
unzip 解压

这是解压后的样子,自带一个docker-compose.yml文件请添加图片描述
接下来很重要

docker volume create arl_db
docker-compose up -d

查看运行状况,如下图所示说明运行正常

请添加图片描述

3.1.4 登录并修改密码

url:http://127.0.0.1:5003
登录凭证:admin/arlpass
3.1.5 多用户登录

由于灯塔本身没有设计用户管理的功能,而且是单点登录,如果有多用户登录需求的需要到数据库中添加用户


# 可以使用下面的命令添加多个平行用户, 使用 admin1/admin123 可登录
docker exec -ti arl_mongodb mongo -u admin -p admin
use arl
db.user.insert({ username: 'admin1', password: hex_md5('arlsalt!@#'+'admin123')
})
3.1.6 修改配置文件

config-docker.yaml中的61行,取消域名限制
请添加图片描述
添加指纹


https://github.com/loecho-sec/ARL-Finger-ADD

请添加图片描述

3.2 anew

anew没有发布编译好的二进制文件,需要下载源码下来自行编译,这里我windows已经安装了go语言环境,在windows环境下编译生成linux二进制文件命令如下:


# 需要在命令行界面,powershell无法配置go环境变量
SET CGO_ENABLED=0
SET GOARCH=amd64
SET GOOS=linux
go build main.go

anew主要将输出与旧文件进行比较,只会输出新添加的内容,并且将新添加的内容加到旧文件。请添加图片描述将anew上传服务器之后,赋予权限和配置软连接


chmod 777 anew
ln -s /root/tools/anew/anew /usr/bin/anew

配置完之后可以直接使用命令行使用

请添加图片描述

3.3 httpx

httpx可以用于探测站点是否存活,灯塔收集的站点可能存在各种返回状态码,httpx这里就能够再筛查一次,将httpx上传服务器之后,赋予权限和配置软连接


chmod 777 httpx
ln -s /root/tools/httpx_1.2.0_linux_amd64/httpx /usr/bin/httpx

配置完之后可以直接使用命令行使用请添加图片描述

3.4 nuclei

3.4.1 nuclei介绍

Nuclei 基于模板跨目标发送请求,扫描速度快且准确度高,可一键更新模板库,模板库来源于nuclei社区,活跃度还是比较高的,因此模板更新速度也比较客观。需要使用go语言编译搭建

3.4.2 nuclei安装

git clone https://github.com/projectdiscovery/nuclei.git
cd nuclei/v2/cmd/nuclei
go build
mv nuclei /usr/local/bin/
nuclei -version

安装完之后可以直接使用命令行运行nuclei请添加图片描述

3.5 灯塔资产获取

3.5.1灯塔api配置

灯塔提供了api接口文档,地址:https://ip:5003/api/doc

要使用api接口爬取数据,首先要配置一个apikey

进入arl目录

vim config-docker.yaml

请添加图片描述
api-key可以自己设定


API_KEY:"ff44256c-xxxx-xxxx-xxxx-xxxxxxxxxxx"

设置好之后重启下灯塔

docker-compose restart

进入api接口文档,在如下位置输入设置的api-key请添加图片描述
设置好之后可以现在网页端的接口文档进行调试使用,检查是否生效,能否正常获取数据请添加图片描述

请添加图片描述
以上调试无异常之后,开始构造数据包,灯塔的认证是在头部加入Token字段即可
请添加图片描述
3.5.2 编写脚本


import optparse
import requests
apikey = "ff44256c-xxxx-xxxx-xxxx-xxxxxxxxxxxx"
requests.packages.urllib3.disable_warnings()
def print_hi(name):
# Use a breakpoint in the code line below to debug your script.
print(f'Hi, {name}') # Press Ctrl+F8 to toggle the breakpoint.
def task(scope_id):
headers = {
'accept': 'application/json',
'Token': apikey
}
ceshi = requests.get("https://ip:5003/api/asset_site/?
size=100&scope_id="+scope_id, headers=headers, verify=False)
json1 = ceshi.json()
number = json1['total']
pages = number//100
pages += 1
for page in range(1,pages+1):
data = requests.get("https://ip:5003/api/asset_site/?
page="+str(page)+"&size=100&scope_id="+scope_id, headers=headers, verify=False)
json_data = data.json()
items = json_data['items']
for item in items:
print("%s" %(item['site']))
# Press the green button in the gutter to run the script.
if __name__ == '__main__':
parser = optparse.OptionParser('python3 arlGetAassert.py -s scope_id -o
result.txt\n'
'Example: python3 arlGetAassert.py -s
6229835c322616001dd91fe4\n')
parser.add_option('-s', dest='scope_id', default='6229835c322616001dd91fe4',
type='string', help='scope_id 资产范围ID')
(options, args) = parser.parse_args()
task(options.scope_id)

代码很简单,大概解释一下流程,这里调用api通过scope_id参数(资产组id)去筛出想要获取的资产组的站点信息,先获取总数,在爬取每一页的数据。资产组id就是下面这个字符串,每次新建一个资产组,就会分配一个资产组id:请添加图片描述
这里运行看下结果
请添加图片描述
可以看到,顺利获取到数据

3.6 配置钉钉机器人

3.6.1 推送灯塔资产

先在群里新建一个机器人

请添加图片描述

请添加图片描述
请添加图片描述
请添加图片描述
请添加图片描述
将webhook的access_token保存留用
请添加图片描述
进入灯塔配置文件

vim config-docker.yaml

请添加图片描述
SECRET对应着钉钉机器人的签名密钥

ACCESS_TOKEN对应着钉钉机器人webhook的access_token

配置完之后重启灯塔,测试配置是否成功

docker-compose exec worker bash
python3.6 -m test.test_utils_push

成功的话钉钉会收到消息推送请添加图片描述

3.6.2 推送nuclei漏扫数据

钉钉机器人要求一定要进行安全设置。

安全设置目前有三种方式

方式一,自定义关键词

最多可以设置10个关键词,消息中至少包含其中1个关键词才可以发送成功。

例如:添加了一个自定义关键词:监控报警

在你写的代码中,让这个机器人所发送的消息必须包含“监控报警”这个词,才能发送成功。否则会出现keyword not in content。错误。

方式二,加签

第一步,把timestamp+“\n”+密钥当做签名字符串,使用HmacSHA256算法计算签名,然后进行Base64 encode,最后再把签名参数再进行urlEncode,得到最终的签名(需要使用UTF-8字符集)。


参数 说明
timestamp 当前时间戳,单位是毫秒,与请求调用时间误差不能超过1小时
secret 密钥,机器人安全设置页面,加签一栏下面显示的SEC开头的字符串

签名计算代码示例


#python 2.7
import time
import hmac
import hashlib
import base64
import urllib
timestamp = long(round(time.time() * 1000))
secret = 'this is secret'
secret_enc = bytes(secret).encode('utf-8')
string_to_sign = '{}\n{}'.format(timestamp, secret)
string_to_sign_enc = bytes(string_to_sign).encode('utf-8')
hmac_code = hmac.new(secret_enc, string_to_sign_enc,
digestmod=hashlib.sha256).digest()
sign = urllib.quote_plus(base64.b64encode(hmac_code))
print(timestamp)
print(sign)

第二步,把 timestamp和第一步得到的签名值拼接到URL中。

https://oapi.dingtalk.com/robot/send?access_token=XXXXXX&timestamp=XXX&sign=XXX

方式三,IP地址(段)
设定后,只有来自IP地址范围内的请求才会被正常处理。支持两种设置方式:IP、IP段,暂不支持IPv6地址白名单,格式如下请添加图片描述
安全设置的上述三种方式,需要至少设置其中一种校验不通过的消息将会发送失败,错误如下

// 消息内容中不包含任何关键词
{
"errcode":310000,
"errmsg":"keywords not in content"
}
// timestamp 无效
{
"errcode":310000,
"errmsg":"invalid timestamp"
}
// 签名不匹配
{
"errcode":310000,
"errmsg":"sign not match"
}
// IP地址不在白名单
{
"errcode":310000,
"errmsg":"ip X.X.X.X not in whitelist"
}

编写脚本


import requests
import json
import sys
def ding_push_message(msg):
# 构建请求头部
header = {
"Content-Type": "application/json",
"Charset": "UTF-8"
}
# 构建请求数据
message = {
"msgtype": "text",
"text": {
"content": msg
},
# 设置@所有人
"at": {
"isAtAll": True
}
}
# 对请求的数据进行json封装
message_json = json.dumps(message)
# 发送请求
info = requests.post(url=web_url, data=message_json, headers=header)
# 打印返回的结果
print(info.text)
if __name__ == "__main__":
# 请求的URL,WebHook地址
web_url = "https://oapi.dingtalk.com/robot/send?access_token=xxx"
# 构建请求数据
file = sys.argv[1]
keyword = sys.argv[2]
with open(file) as f:
data = f.read()
if data == '':
data = '未发现新漏洞'
ding_push_message("[漏洞监控-"+keyword+"]\n"+str(data))

这里可以输入任意message进行测试检查能否正常推送请添加图片描述

可以看到正常推送了

0x04 自动化命令

部署完以上所有工具后,即可使用命令进行无止尽的自动探测,在linux下输入如下指令:


while true; do python3 arlGetAassert.py -s 6229835c322616001dd91fe4 | anew
urls.txt | httpx | nuclei -es info -o result.txt ;python3 dingding.py result.txt
; sleep 3600; done

流程大概如下:

先用脚本获取灯塔数据进行资产收集,并通过anew来过滤历史域名,把监测到的新资产送给httpx存活检测,httpx把存活的资产送给nuclei进行漏洞扫描,-es info的意思是排除扫描info级别的漏洞。扫描结束后,会使用python脚本把漏洞结果发送到我们钉钉推送,这样一个循环就结束了,并等待3600秒,也就是1小时。

0x05 结语

这套体系刚搭建完,目前体验还是不错的,但仍然有提升优化的空间,可以在灯塔api开发的基础上多写几个脚本用于搜索资产、增加资产等,我这里部署完灯塔之后明显能感觉到web端访问响应速度体验并不是很好,使用api进行操作能够提高速度。

然后的话就是灯塔收集资产是需要提供根域名的,这里并没有集成搜集根域名的方式,可以在后续进行优化提升,除此之外,灯塔收集的资产有限,还可以结合其他资产收集工具进行资产收集,同时也可以集成指纹识别的工具并进行钉钉推送,提高渗透效率。

最后,篇幅较为冗长,感谢能够看到这里,整体涉及的所有步骤都写了,如果觉得有所收获的话,麻烦点个关注支持下啦。
在这里插入图片描述

。 协助甲方安全团队或者渗透测试人员有效侦察和检索资产,发现存在的薄弱点和攻击面。.zip目标检测(Object Detection)是计算机视觉领域的一个核心问题,其主要任务是找出图像中所有感兴趣的目标(物体),并确定它们的类别和位置。以下是对目标检测的详细阐述: 一、基本概念 目标检测的任务是解决“在哪里?是什么?”的问题,即定位出图像中目标的位置并识别出目标的类别。由于各类物体具有不同的外观、形状和姿态,上成像时光照、遮挡等因素的干扰,目标检测一直是计算机视觉领域最具挑战性的任务之一。 二、核心问题 目标检测涉及以下几个核心问题: 分类问题:判断图像中的目标属于哪个类别。 定位问题:确定目标在图像中的具体位置。 大小问题:目标可能具有不同的大小。 形状问题:目标可能具有不同的形状。 三、算法分类 基于深度学习的目标检测算法主要分为两大类: Two-stage算法:先进行区域生成(Region Proposal),生成有可能包含待检物体的预选框(Region Proposal),再通过卷积神经网络进行样本分类。常见的Two-stage算法包括R-CNN、Fast R-CNN、Faster R-CNN等。 One-stage算法:不用生成区域提议,直接在网络中提取特征来预测物体分类和位置。常见的One-stage算法包括YOLO系列(YOLOv1、YOLOv2、YOLOv3、YOLOv4、YOLOv5等)、SSD和RetinaNet等。 四、算法原理 以YOLO系列为例,YOLO将目标检测视为回归问题,将输入图像一次性划分为多个区域,直接在输出层预测边界框和类别概率。YOLO采用卷积网络来提取特征,使用全连接层来得到预测值。其网络结构通常包含多个卷积层和全连接层,通过卷积层提取图像特征,通过全连接层输出预测结果。 五、应用领域 目标检测技术已经广泛应用于各个领域,为人们的生活带来了极大的便利。以下是一些主要的应用领域: 安全监控:在商场、银行
ARL资产侦察灯塔是一个用于快速侦察与目标关联的互联网资产的系统,它可以帮助甲方安全团队或渗透测试人员有效地侦察和检索资产,发现存在的薄弱点和攻击面。这个系统可以快速发现并整理企业外网资产,并为资产构建基础数据库,无需登录凭证或特殊访问即可主动发现并识别资产。这样可以让安全团队或渗透测试人员快速寻找到指定企业资产中的脆弱点,降低资产被威胁利用的可能性,并规避可能带来的不利影响。ARL资产侦察灯塔是一个非常有用的工具,可以帮助企业提升安全性。 对于Linux操作系统,你提到了一个命令行的示例[root@xuegod63 ~# yum-config-manager --add-repo http://mirrors.aliyun.com/docker-ce/linux/centos/docker-ce.repo。这是用于添一个yum源的命令,使得你可以使用yum命令来安装或更新Docker软件包。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* [资产灯塔系统ARL安装使用](https://blog.csdn.net/weixin_42181573/article/details/117949569)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v92^chatsearchT3_1"}}] [.reference_item style="max-width: 50%"] - *2* *3* [网络安全kali渗透学习 web渗透入门 ARL资产侦察灯塔系统搭建及使用](https://blog.csdn.net/xueshenlaila/article/details/122620211)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v92^chatsearchT3_1"}}] [.reference_item style="max-width: 50%"] [ .reference_list ]
评论 9
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

青衫木马牛

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值