TSP旅行售货员问题(排列树回溯法)

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

代码

#include <iostream>
#include <cstdlib>
using namespace std;
#define N 100
int n; //表示城市个数
int a[N + 1][N + 1];
int x[N];
int bestx[N];
int bestc = -1; //最右路径长度;
int cc = 0;    //当前路径的长度
void Backtrcak(int i)
{
   if (i > n) // 当到达叶子结点时
   {
      //当最后一个城市和出发城市之间有路且当前路径与长度最后一个城市到出发城市之间的长度之和小于最优解时,表明得到了新的最优解和最优值,更新最优解和最优值
      if (a[x[n]][x[1]] > 0 && (cc + a[x[n]][x[1]] < bestc || bestc == -1))
      {
         bestc = cc + a[x[n]][x[1]];  //更新最优值
         for (int j = 1; j <= n; j++) //更新最优解
            bestx[j] = x[j];
      }
   }
   else //当没有到达叶子结点时
   {
      for (int j = i; j <= n; j++) //采用全排列方式
      {
         //当当前城市和前一个城市之间有路且当前路径长度和当前城市和前一个城市之间的路径长度之和小于最优解,说明还有可能产生最优解和最优值,继续搜索,不满足条件则不可能有新的最优值,则剪枝剪去即可
         if (a[x[i - 1]][x[j]] > 0 && (cc + a[x[i - 1]][x[j]] < bestc || bestc == -1))
         {
            swap(x[i], x[j]);
            cc += a[x[i - 1]][x[i]];
            Backtrcak(i + 1);
            cc -= a[x[i - 1]][x[i]];
            swap(x[i], x[j]);
         }
      }
   }
}
int main()
{
   cin >> n;
   for (int i = 1; i <= n; i++)
      for (int j = 1; j <= n; j++)
         cin >> a[i][j];
   for (int i = 1; i <= n; i++)
      x[i] = i;
   Backtrcak(2);
   cout << bestc << endl;
   for (int i = 1; i <= n; i++)
      cout << bestx[i] << " ";
   system("pause");
   return 0;
}
  • 2
    点赞
  • 14
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
旅行售货员问题是指一个旅行售货员要拜访n个城市,他需要选择一条路径,使得经过每个城市恰好一次,并且路径的总长度最小。这是一个经典的组合优化问题,可以用回溯法实现。 以下是使用C语言实现旅行售货员问题回溯法代码: ```c #include <stdio.h> #include <stdlib.h> #include <limits.h> #define N 4 // 城市个数 int visited[N]; // 记录城市是否被访问 int path[N]; // 记录路径 int min_path[N]; // 记录最短路径 int graph[N][N] = { // 城市之间的距离 {0, 10, 15, 20}, {10, 0, 35, 25}, {15, 35, 0, 30}, {20, 25, 30, 0} }; int min_dist = INT_MAX; // 最短路径长度 void tsp(int cur, int dist) { if (cur == N) { // 所有城市都已经访问过 if (dist + graph[path[N-1]][path[0]] < min_dist) { // 更新最短路径 min_dist = dist + graph[path[N-1]][path[0]]; for (int i = 0; i < N; i++) { min_path[i] = path[i]; } } return; } for (int i = 0; i < N; i++) { if (!visited[i]) { // 如果城市i没有被访问过 visited[i] = 1; // 标记城市i为已访问 path[cur] = i; // 将城市i加入路径 tsp(cur+1, dist+graph[path[cur-1]][i]); // 继续访问下一个城市 visited[i] = 0; // 回溯到上一个城市 } } } int main() { visited[0] = 1; // 从城市0开始访问 path[0] = 0; tsp(1, 0); // 计算最短路径 printf("最短路径长度为:%d\n", min_dist); printf("最短路径为:"); for (int i = 0; i < N; i++) { printf("%d ", min_path[i]); } printf("\n"); return 0; } ``` 在上述代码中,我们使用了一个全局变量`visited`来记录每个城市是否被访问过,使用`path`数组来记录当前的路径,使用`min_path`数组来记录最短路径,使用`graph`数组来表示城市之间的距离。我们使用递归函数`tsp`来实现回溯法,其中`cur`表示当前访问到的城市编号,`dist`表示当前路径长度。在`tsp`函数中,我们首先判断是否所有城市都已经访问过,如果是,则更新最短路径;否则,我们遍历所有没有被访问过的城市,将其加入路径,并继续访问下一个城市。在访问完当前城市之后,我们回溯到上一个城市,将当前城市标记为未访问过,继续遍历其他城市。 最后,我们在`main`函数中调用`tsp`函数,计算出最短路径,并输出结果。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值