Celery在python中的应用

本文介绍Celery的基础概念、安装配置及使用方法,涵盖异步任务处理、定时任务设定等内容,并演示如何在Django项目中集成Celery。

1. 什么是Celery

1.1 Celery
  • Celery是一个简单、灵活且可靠的,处理大量消息的分布式系统,专注于实时处理的异步任务队列,同时也支持任务调度。

    [外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-N3LWGc2A-1600352898065)(C:\Users\Outlierwu\AppData\Roaming\Typora\typora-user-images\image-20200917154151312.png)]

1.2 Celery的组成
  • Celery的架构由三部分组成,消息中间件(message broker),任务执行单元(worker)和任务执行结果存储(task result store)组成。
    • 消息中间件:Celery本身不提供消息服务,但是可以方便的和第三方提供的消息中间件集成。包括,RabbitMQ, Redis等等
    • 任务执行单元:Worker是Celery提供的任务执行的单元,worker并发的运行在分布式的系统节点中。
    • 任务结果存储:Task result store用来存储Worker执行的任务的结果,Celery支持以不同方式存储任务的结果,包括AMQP, redis等
  • 另外, Celery还支持不同的并发和序列化的手段
    • 并发:Prefork, Eventlet, gevent, threads/single threaded
    • 序列化:pickle, json, yaml, msgpack. zlib, bzip2 compression, Cryptographic message signing 等等
1.3 使用场景
  • celery是一个强大的 分布式任务队列的异步处理框架,它可以让任务的执行完全脱离主程序,甚至可以被分配到其他主机上运行。我们通常使用它来实现异步任务(async task)和定时任务(crontab)。
    • 异步任务:将耗时操作任务提交给Celery去异步执行,比如发送短信/邮件、消息推送、音视频处理等等
    • 定时任务:定时执行某件事情,比如每天数据统计
1.4 Celery具有以下优点
Simple(简单)
Celery 使用和维护都非常简单,并且不需要配置文件。

Highly Available(高可用)
woker和client会在网络连接丢失或者失败时,自动进行重试。并且有的brokers 也支持“双主”或者“主/从”的方式实现高可用。

Fast(快速)
单个的Celery进程每分钟可以处理百万级的任务,并且只需要毫秒级的往返延迟(使用 RabbitMQ, librabbitmq, 和优化设置时)

Flexible(灵活)
Celery几乎每个部分都可以扩展使用,自定义池实现、序列化、压缩方案、日志记录、调度器、消费者、生产者、broker传输等等。
1.5 安装Celery
  • pip安装

    pip insatll celery

  • 源代码安装

    sudo easy_install Celery

2. Celery执行异步任务

2.1 创建一个简单的异步任务执行文件celery_task:
import celery
import time

# 任务结果储存,使用redis的1号仓库
backend = 'redis://127.0.0.1:6379/1'
# 消息中间件,使用redis的2号仓库
broker = 'redis://127.0.0.1:6379/2'

# 创建celery对象
cel = celery.Celery('test', backend=backend, broker=broker)


@cel.task
def send_email(name):
    print("向%s发送邮件..." % name)
    time.sleep(5)
    print("向%s发送邮件完成" % name)
    return "ok"

@cel.task
def send_message(name):
    print("向%s发送短信..." % name)
    time.sleep(5)
    print("向%s发送短信完成" % name)
    return "ok"
  • 注意:创建完之后不要直接启动程序,在celery_task.py同级目录下打开终端执行:

    celery worker -A celery_task -l info

    [外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-A6QjxVBT-1600352898074)(C:\Users\Outlierwu\AppData\Roaming\Typora\typora-user-images\image-20200917191545139.png)]

  • 这条命令的作用: 内部会用Celery执行链接broker中的redis,然后创建一个消息队列,在启动多个worker来监听你的任务

  • 日志上参数:

    • app: 项目名称
    • transport:消息中间件
    • results:任务结果存储
    • concurrency:并发数
    • [tasks] : 底下的是能够扫描到的异步任务
2.2 创建执行文件 produce_task:
from celery_task import send_email,send_message
# .delay是celery自带的参数
result = send_email.delay("yuan")
print(result.id)
result2 = send_message.delay("alex")
print(result2.id)
  • 执行produce_task.py

    [外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-lw3zEH9C-1600409181865)(C:\Users\Outlierwu\AppData\Roaming\Typora\typora-user-images\image-20200917221207249.png)]

  • 会拿到两个id值,这个id值是存入到Task result store中,也就是在redis中,当业务中有需要调用到该id时可以直接通过访问redis调用,而且这个id不管任务有没有成功都会返回结果

  • 在终端里:

    [外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-nHnsGMEW-1600409181869)(C:\Users\Outlierwu\AppData\Roaming\Typora\typora-user-images\image-20200917221559222.png)]

    • 可以看到两个任务时同时发送的,并且5s之后同时完成,所以证明异步发送成功了
2.2.1 celery4.x在win10下报错解决
  • 在win10下运行celery4.x会报如下的错

    • [外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-5kyQBXN7-1600409181871)(C:\Users\Outlierwu\AppData\Roaming\Typora\typora-user-images\image-20200918104506593.png)]
  • 解决:

    • 安装eventlet

      pip install eventlet
      
    • 启动worker加参数

      celery worker -A celery_task -l info -P eventlet
      
    • 两种情况: 1.报错解除,可以执行worker 2. 继续报错,报错如下

      [外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-QbfWh2rr-1600409181873)(C:\Users\Outlierwu\AppData\Roaming\Typora\typora-user-images\image-20200918111210888.png)]

    • 查看之前安装的eventlet版本,默认安装的是eventlet==0.27.0,卸载安装eventlet==0.26.0

      pip install eventlet==0.26.0
      
    • 最后执行:

      celery worker -A celery_task -l info -P eventlet
      

      [外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-9zZ6YW3B-1600409181875)(C:\Users\Outlierwu\AppData\Roaming\Typora\typora-user-images\image-20200918112057209.png)]

2.3 创建文件 result.py 查看执行结果:
from celery.result import AsyncResult
from celery_task import cel

# id就是之前的执行结果,也就是才能存入redis的key
# 通过AsyncResult调出结果,app是设置celery对象
async_result=AsyncResult(id="c6ddd5b7-a662-4f0e-93d4-ab69ec2aea5d", app=cel)

if async_result.successful():
    result = async_result.get()
    print(result)
   # 成功则返回ok 
    # result.forget() # 将结果删除
elif async_result.failed():
    print('执行失败')
elif async_result.status == 'PENDING':
    print('任务等待中被执行')
elif async_result.status == 'RETRY':
    print('任务异常后正在重试')
elif async_result.status == 'STARTED':
    print('任务已经开始被执行')

3. 多任务结构

3.1 创建新项目
  • 目录结构:

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-eBhH7BSd-1600409181876)(C:\Users\Outlierwu\AppData\Roaming\Typora\typora-user-images\image-20200918113535959.png)]

3.2 代码实现
  • celery.py(默认配置):

    from celery import Celery
    
    cel = Celery('celery_demo',
                 broker='redis://127.0.0.1:6379/1',
                 backend='redis://127.0.0.1:6379/2',
                 # 包含以下两个任务文件,去相应的py文件中找任务,对多个任务做分类
                 include=['celery_tasks.task01',
                          'celery_tasks.task02'
                          ])
    
    # 时区
    cel.conf.timezone = 'Asia/Shanghai'
    # 是否使用UTC
    cel.conf.enable_utc = False
    
  • task01.py,task02.py(任务):

    # task01
    import time
    from .celery import cel
    
    @cel.task
    def send_email(res):
        print("完成向%s发送邮件任务"%res)
        time.sleep(5)
        return "邮件完成"
    
    
    # task02
    import time
    from .celery import cel
    
    @cel.task
    def send_msg(res):
        print("完成向%s发送短信任务"%res)
        time.sleep(5)
        return "短信完成"
    
  • produce_task.py(消费者):

    from celery_tasks.task01 import send_email
    from celery_tasks.task02 import send_msg
    
    # 立即告知celery去执行test_celery任务,并传入一个参数
    result = send_email.delay('yuan')
    print(result.id)
    result = send_msg.delay('yuan')
    print(result.id)
    
  • check_result.py(结果获得):

    from celery.result import AsyncResult
    from celery_tasks.celery import cel
    
    async_result = AsyncResult(id="e5f72e6a-ccfe-4c3c-af70-6fa1108ad084", app=cel)
    
    if async_result.successful():
        result = async_result.get()
        print(result)
        # result.forget() # 将结果删除,执行完成,结果不会自动删除
        # async.revoke(terminate=True)  # 无论现在是什么时候,都要终止
        # async.revoke(terminate=False) # 如果任务还没有开始执行呢,那么就可以终止。
    elif async_result.failed():
        print('执行失败')
    elif async_result.status == 'PENDING':
        print('任务等待中被执行')
    elif async_result.status == 'RETRY':
        print('任务异常后正在重试')
    elif async_result.status == 'STARTED':
        print('任务已经开始被执行')
    

4. 定时任务

  • produce_task.py:

    from celery_task import send_email
    from datetime import datetime
    
    # 方式一
    # v1 = datetime(2020, 3, 11, 16, 19, 00)
    # print(v1)
    # v2 = datetime.utcfromtimestamp(v1.timestamp())
    # print(v2)
    # result = send_email.apply_async(args=["egon",], eta=v2)
    # print(result.id)
    
    # 方式二
    ctime = datetime.now()
    # 默认用utc时间
    utc_ctime = datetime.utcfromtimestamp(ctime.timestamp())
    from datetime import timedelta
    time_delay = timedelta(seconds=10)
    task_time = utc_ctime + time_delay
    
    # 使用apply_async并设定时间
    result = send_email.apply_async(args=["egon"], eta=task_time)
    print(result.id)
    
  • 注意:这里我们可以看到定时任务异步任务方法有一处不相同:

    # 异步任务
    send_email.delay('yuan')
    # 定时任务
    send_email.apply_async(args=["egon"], eta=task_time)
    本质上这两个方法一样,当 apply_async中没有传入eta,那就相当于 delay
    

5. 多目录下定时任务

  • 多任务结构下的celery.py:

    from datetime import timedelta
    from celery import Celery
    from celery.schedules import crontab
    
    cel = Celery('tasks', broker='redis://127.0.0.1:6379/1', backend='redis://127.0.0.1:6379/2', include=[
        'celery_tasks.task01',
        'celery_tasks.task02',
    ])
    cel.conf.timezone = 'Asia/Shanghai'
    cel.conf.enable_utc = False
    
    cel.conf.beat_schedule = {
        # 名字随意命名
        'add-every-6-seconds': {
            # 执行tasks1下的test_celery函数
            'task': 'celery_tasks.task01.send_email',
            # 每隔2秒执行一次
            # 'schedule': 1.0,
            # 'schedule': crontab(minute="*/1"),
            'schedule': timedelta(seconds=6),
            # 传递参数
            'args': ('张三',)
        },
        # 'add-every-12-seconds': {
        #     'task': 'celery_tasks.task01.send_email',
        #     每年4月11号,8点42分执行
        #     'schedule': crontab(minute=42, hour=8, day_of_month=11, month_of_year=4),
        #     'args': ('张三',)
        # },
    } 
    
  • 启动worker进程:celery worker -A celery_tasks -l info -P eventlet

  • 启动Beat进程: celery beat -A celery_tasks

5.2 代码解释
  • 当开启Beat进程他会不断的往消息队列里放入任务,然后等worker进程开启后会在消息队列里取任务,所以当Beat进程往borker里放入很多任务,worker进程没开启时,他会在borker里积攒这些任务,等到worker进程开启在执行,但当worker进程检测到borker里有大量任务时,worker会开启多个线程来执行任务,所以你可能会看到下面的结果:

    [外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-Bhgj1jxD-1600435362241)(C:\Users\Outlierwu\AppData\Roaming\Typora\typora-user-images\image-20200918201108066.png)]

  • 关于worker: 这里可以通过加上个c参数来控制开启的线程数

    • celery worker -A celery_tasks -l info -P eventlet -c 4
  • 解决:

    • 任务存储到redis中,我们可以通过连接redis来将其任务的key全删除就可以了

    • 创建 redis_test.py:

      import redis
      
      # 注意任务存储的是之前指定的1号仓库,所以这里要通过db来指定仓库
      redb = redis.Redis(host="127.0.0.1", port=6379, db=1)
      # redb.delete("celery")
      for i in redb.lrange("celery", 0, -1):
          print(i)
      
  • 执行完上面的步骤在重新开启worker进程和Beat进程就可以看到定时任务

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-oiN0STe5-1600435362254)(C:\Users\Outlierwu\AppData\Roaming\Typora\typora-user-images\image-20200918202105886.png)]

6. Django中使用Celery

6.1 创建新的Django项目
  • 目录结果:

    [外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-7LGHPUqy-1600435362262)(C:\Users\Outlierwu\AppData\Roaming\Typora\typora-user-images\image-20200918210645896.png)]

6.2 文件代码
  • config.py(配置文件)

    broker_url = 'redis://127.0.0.1:6379/15'
    result_backend = 'redis://127.0.0.1:6379/14'
    
  • main.py(主程序)

    # 主程序
    import os
    from celery import Celery
    # 创建celery实例对象
    app = Celery("sms")
    
    # 把celery和django进行组合,识别和加载django的配置文件
    os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'celeryPros.settings.dev')
    
    # 通过app对象加载配置
    app.config_from_object("mycelerys.config")
    
    # 加载任务
    # 参数必须必须是一个列表,里面的每一个任务都是任务的路径名称
    # app.autodiscover_tasks(["任务1","任务2"])
    app.autodiscover_tasks(["mycelerys.sms",])
    
    # 启动Celery的命令
    # 强烈建议切换目录到mycelery根目录下启动
    # celery -A mycelery.main worker --loglevel=info -P eventlet
    
  • tasks.py(任务文件)

    # celery的任务必须写在tasks.py的文件中,别的文件名称不识别!!!
    from mycelerys.main import app
    import time
    
    
    import logging
    log = logging.getLogger("django")
    
    @app.task  # name表示设置任务的名称,如果不填写,则默认使用函数名做为任务名
    def send_sms(mobile):
        """发送短信"""
        print("向手机号%s发送短信成功!"%mobile)
        time.sleep(5)
    
        return "send_sms OK"
    
    @app.task  # name表示设置任务的名称,如果不填写,则默认使用函数名做为任务名
    def send_sms2(mobile):
        print("向手机号%s发送短信成功!" % mobile)
        time.sleep(5)
    
        return "send_sms2 OK"
    
    • 注意,任务文件必须为tasks.py,当有多个任务时,要重新创建python包,在包下创建tasks.py文件
  • Django视图调用,views.py

    from datetime import datetime,timedelta
    
    from django.http import HttpResponse
    from django.shortcuts import render
    from mycelerys.sms.tasks import send_sms, send_sms2
    
    
    def test(request):
        # 异步任务
        # send_sms.delay("110")
        # send_sms2.delay("119")
        # send_sms.delay() 如果调用的任务函数没有参数,则不需要填写任何内容
    
        # 定时任务
        ctime = datetime.now()
        # 默认用utc时间
        utc_ctime = datetime.utcfromtimestamp(ctime.timestamp())
        time_delay = timedelta(seconds=10)
        task_time = utc_ctime + time_delay
        result = send_sms.apply_async(["911", ], eta=task_time)
        print(result.id)
        return HttpResponse("ok")
    

代码参考:cnblogs.com/pyedu/p/12461819.html

视频:https://www.bilibili.com/video/BV1Pa4y1Y7QN?p=6

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值