文章目录
1. 什么是Celery
1.1 Celery
-
Celery是一个简单、灵活且可靠的,处理大量消息的分布式系统,专注于实时处理的异步任务队列,同时也支持任务调度。
![[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-N3LWGc2A-1600352898065)(C:\Users\Outlierwu\AppData\Roaming\Typora\typora-user-images\image-20200917154151312.png)]](https://i-blog.csdnimg.cn/blog_migrate/4a96817bbb710f3763c4b991d0b5a81a.png#pic_center)
1.2 Celery的组成
- Celery的架构由三部分组成,消息中间件(message broker),任务执行单元(worker)和任务执行结果存储(task result store)组成。
- 消息中间件:Celery本身不提供消息服务,但是可以方便的和第三方提供的消息中间件集成。包括,RabbitMQ, Redis等等
- 任务执行单元:Worker是Celery提供的任务执行的单元,worker并发的运行在分布式的系统节点中。
- 任务结果存储:Task result store用来存储Worker执行的任务的结果,Celery支持以不同方式存储任务的结果,包括AMQP, redis等
- 另外, Celery还支持不同的并发和序列化的手段
- 并发:Prefork, Eventlet, gevent, threads/single threaded
- 序列化:pickle, json, yaml, msgpack. zlib, bzip2 compression, Cryptographic message signing 等等
1.3 使用场景
- celery是一个强大的 分布式任务队列的异步处理框架,它可以让任务的执行完全脱离主程序,甚至可以被分配到其他主机上运行。我们通常使用它来实现异步任务(async task)和定时任务(crontab)。
- 异步任务:将耗时操作任务提交给Celery去异步执行,比如发送短信/邮件、消息推送、音视频处理等等
- 定时任务:定时执行某件事情,比如每天数据统计
1.4 Celery具有以下优点
Simple(简单)
Celery 使用和维护都非常简单,并且不需要配置文件。
Highly Available(高可用)
woker和client会在网络连接丢失或者失败时,自动进行重试。并且有的brokers 也支持“双主”或者“主/从”的方式实现高可用。
Fast(快速)
单个的Celery进程每分钟可以处理百万级的任务,并且只需要毫秒级的往返延迟(使用 RabbitMQ, librabbitmq, 和优化设置时)
Flexible(灵活)
Celery几乎每个部分都可以扩展使用,自定义池实现、序列化、压缩方案、日志记录、调度器、消费者、生产者、broker传输等等。
1.5 安装Celery
-
pip安装
pip insatll celery -
源代码安装
sudo easy_install Celery
2. Celery执行异步任务
2.1 创建一个简单的异步任务执行文件celery_task:
import celery
import time
# 任务结果储存,使用redis的1号仓库
backend = 'redis://127.0.0.1:6379/1'
# 消息中间件,使用redis的2号仓库
broker = 'redis://127.0.0.1:6379/2'
# 创建celery对象
cel = celery.Celery('test', backend=backend, broker=broker)
@cel.task
def send_email(name):
print("向%s发送邮件..." % name)
time.sleep(5)
print("向%s发送邮件完成" % name)
return "ok"
@cel.task
def send_message(name):
print("向%s发送短信..." % name)
time.sleep(5)
print("向%s发送短信完成" % name)
return "ok"
-
注意:创建完之后不要直接启动程序,在
celery_task.py同级目录下打开终端执行:celery worker -A celery_task -l info![[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-A6QjxVBT-1600352898074)(C:\Users\Outlierwu\AppData\Roaming\Typora\typora-user-images\image-20200917191545139.png)]](https://i-blog.csdnimg.cn/blog_migrate/078963759fd42f9e65352edb8d989930.png#pic_center)
-
这条命令的作用: 内部会用Celery执行链接broker中的redis,然后创建一个消息队列,在启动多个worker来监听你的任务
-
日志上参数:
- app: 项目名称
- transport:消息中间件
- results:任务结果存储
- concurrency:并发数
- [tasks] : 底下的是能够扫描到的异步任务
2.2 创建执行文件 produce_task:
from celery_task import send_email,send_message
# .delay是celery自带的参数
result = send_email.delay("yuan")
print(result.id)
result2 = send_message.delay("alex")
print(result2.id)
-
执行produce_task.py
![[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-lw3zEH9C-1600409181865)(C:\Users\Outlierwu\AppData\Roaming\Typora\typora-user-images\image-20200917221207249.png)]](https://i-blog.csdnimg.cn/blog_migrate/ac597e21be7be35077fdd129e1d4670e.png#pic_center)
-
会拿到两个id值,这个id值是存入到Task result store中,也就是在redis中,当业务中有需要调用到该id时可以直接通过访问redis调用,而且这个id不管任务有没有成功都会返回结果
-
在终端里:
![[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-nHnsGMEW-1600409181869)(C:\Users\Outlierwu\AppData\Roaming\Typora\typora-user-images\image-20200917221559222.png)]](https://i-blog.csdnimg.cn/blog_migrate/cb137e90542acdb357d70be983a329ef.png#pic_center)
- 可以看到两个任务时同时发送的,并且5s之后同时完成,所以证明异步发送成功了
2.2.1 celery4.x在win10下报错解决
-
在win10下运行celery4.x会报如下的错
-
解决:
-
安装
eventletpip install eventlet -
启动worker加参数
celery worker -A celery_task -l info -P eventlet -
两种情况: 1.报错解除,可以执行worker 2. 继续报错,报错如下
![[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-QbfWh2rr-1600409181873)(C:\Users\Outlierwu\AppData\Roaming\Typora\typora-user-images\image-20200918111210888.png)]](https://i-blog.csdnimg.cn/blog_migrate/41994c09e1b1308b2b90e7954256f7f0.png#pic_center)
-
查看之前安装的
eventlet版本,默认安装的是eventlet==0.27.0,卸载安装eventlet==0.26.0pip install eventlet==0.26.0 -
最后执行:
celery worker -A celery_task -l info -P eventlet![[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-9zZ6YW3B-1600409181875)(C:\Users\Outlierwu\AppData\Roaming\Typora\typora-user-images\image-20200918112057209.png)]](https://i-blog.csdnimg.cn/blog_migrate/a85a8a19b4a57bbc0e1acee919172171.png#pic_center)
-
2.3 创建文件 result.py 查看执行结果:
from celery.result import AsyncResult
from celery_task import cel
# id就是之前的执行结果,也就是才能存入redis的key
# 通过AsyncResult调出结果,app是设置celery对象
async_result=AsyncResult(id="c6ddd5b7-a662-4f0e-93d4-ab69ec2aea5d", app=cel)
if async_result.successful():
result = async_result.get()
print(result)
# 成功则返回ok
# result.forget() # 将结果删除
elif async_result.failed():
print('执行失败')
elif async_result.status == 'PENDING':
print('任务等待中被执行')
elif async_result.status == 'RETRY':
print('任务异常后正在重试')
elif async_result.status == 'STARTED':
print('任务已经开始被执行')
3. 多任务结构
3.1 创建新项目
- 目录结构:
![[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-eBhH7BSd-1600409181876)(C:\Users\Outlierwu\AppData\Roaming\Typora\typora-user-images\image-20200918113535959.png)]](https://i-blog.csdnimg.cn/blog_migrate/e51a7a378279544611b6eeb3570a840f.png#pic_center)
3.2 代码实现
-
celery.py(默认配置):
from celery import Celery cel = Celery('celery_demo', broker='redis://127.0.0.1:6379/1', backend='redis://127.0.0.1:6379/2', # 包含以下两个任务文件,去相应的py文件中找任务,对多个任务做分类 include=['celery_tasks.task01', 'celery_tasks.task02' ]) # 时区 cel.conf.timezone = 'Asia/Shanghai' # 是否使用UTC cel.conf.enable_utc = False -
task01.py,task02.py(任务):
# task01 import time from .celery import cel @cel.task def send_email(res): print("完成向%s发送邮件任务"%res) time.sleep(5) return "邮件完成" # task02 import time from .celery import cel @cel.task def send_msg(res): print("完成向%s发送短信任务"%res) time.sleep(5) return "短信完成" -
produce_task.py(消费者):
from celery_tasks.task01 import send_email from celery_tasks.task02 import send_msg # 立即告知celery去执行test_celery任务,并传入一个参数 result = send_email.delay('yuan') print(result.id) result = send_msg.delay('yuan') print(result.id) -
check_result.py(结果获得):
from celery.result import AsyncResult from celery_tasks.celery import cel async_result = AsyncResult(id="e5f72e6a-ccfe-4c3c-af70-6fa1108ad084", app=cel) if async_result.successful(): result = async_result.get() print(result) # result.forget() # 将结果删除,执行完成,结果不会自动删除 # async.revoke(terminate=True) # 无论现在是什么时候,都要终止 # async.revoke(terminate=False) # 如果任务还没有开始执行呢,那么就可以终止。 elif async_result.failed(): print('执行失败') elif async_result.status == 'PENDING': print('任务等待中被执行') elif async_result.status == 'RETRY': print('任务异常后正在重试') elif async_result.status == 'STARTED': print('任务已经开始被执行')
4. 定时任务
-
produce_task.py:
from celery_task import send_email from datetime import datetime # 方式一 # v1 = datetime(2020, 3, 11, 16, 19, 00) # print(v1) # v2 = datetime.utcfromtimestamp(v1.timestamp()) # print(v2) # result = send_email.apply_async(args=["egon",], eta=v2) # print(result.id) # 方式二 ctime = datetime.now() # 默认用utc时间 utc_ctime = datetime.utcfromtimestamp(ctime.timestamp()) from datetime import timedelta time_delay = timedelta(seconds=10) task_time = utc_ctime + time_delay # 使用apply_async并设定时间 result = send_email.apply_async(args=["egon"], eta=task_time) print(result.id) -
注意:这里我们可以看到
定时任务和异步任务方法有一处不相同:# 异步任务 send_email.delay('yuan') # 定时任务 send_email.apply_async(args=["egon"], eta=task_time) 本质上这两个方法一样,当 apply_async中没有传入eta,那就相当于 delay
5. 多目录下定时任务
-
多任务结构下的celery.py:
from datetime import timedelta from celery import Celery from celery.schedules import crontab cel = Celery('tasks', broker='redis://127.0.0.1:6379/1', backend='redis://127.0.0.1:6379/2', include=[ 'celery_tasks.task01', 'celery_tasks.task02', ]) cel.conf.timezone = 'Asia/Shanghai' cel.conf.enable_utc = False cel.conf.beat_schedule = { # 名字随意命名 'add-every-6-seconds': { # 执行tasks1下的test_celery函数 'task': 'celery_tasks.task01.send_email', # 每隔2秒执行一次 # 'schedule': 1.0, # 'schedule': crontab(minute="*/1"), 'schedule': timedelta(seconds=6), # 传递参数 'args': ('张三',) }, # 'add-every-12-seconds': { # 'task': 'celery_tasks.task01.send_email', # 每年4月11号,8点42分执行 # 'schedule': crontab(minute=42, hour=8, day_of_month=11, month_of_year=4), # 'args': ('张三',) # }, } -
启动worker进程:
celery worker -A celery_tasks -l info -P eventlet -
启动Beat进程:
celery beat -A celery_tasks
5.2 代码解释
-
当开启Beat进程他会不断的往消息队列里放入任务,然后等worker进程开启后会在消息队列里取任务,所以当Beat进程往borker里放入很多任务,worker进程没开启时,他会在borker里积攒这些任务,等到worker进程开启在执行,但当worker进程检测到borker里有大量任务时,worker会开启多个线程来执行任务,所以你可能会看到下面的结果:
![[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-Bhgj1jxD-1600435362241)(C:\Users\Outlierwu\AppData\Roaming\Typora\typora-user-images\image-20200918201108066.png)]](https://i-blog.csdnimg.cn/blog_migrate/b84cef4ee17d68203e978e8a69af2d72.png#pic_center)
-
关于worker: 这里可以通过加上个
c参数来控制开启的线程数celery worker -A celery_tasks -l info -P eventlet -c 4
-
解决:
-
任务存储到redis中,我们可以通过连接redis来将其任务的key全删除就可以了
-
创建 redis_test.py:
import redis # 注意任务存储的是之前指定的1号仓库,所以这里要通过db来指定仓库 redb = redis.Redis(host="127.0.0.1", port=6379, db=1) # redb.delete("celery") for i in redb.lrange("celery", 0, -1): print(i)
-
-
执行完上面的步骤在重新开启
worker进程和Beat进程就可以看到定时任务
![[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-oiN0STe5-1600435362254)(C:\Users\Outlierwu\AppData\Roaming\Typora\typora-user-images\image-20200918202105886.png)]](https://i-blog.csdnimg.cn/blog_migrate/330bdecedc61bad80c6c55523c0f0a91.png#pic_center)
6. Django中使用Celery
6.1 创建新的Django项目
-
目录结果:
![[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-7LGHPUqy-1600435362262)(C:\Users\Outlierwu\AppData\Roaming\Typora\typora-user-images\image-20200918210645896.png)]](https://i-blog.csdnimg.cn/blog_migrate/2fb56a532f11e7b9c7b2c45a2a76066e.png#pic_center)
6.2 文件代码
-
config.py(配置文件)
broker_url = 'redis://127.0.0.1:6379/15' result_backend = 'redis://127.0.0.1:6379/14' -
main.py(主程序)
# 主程序 import os from celery import Celery # 创建celery实例对象 app = Celery("sms") # 把celery和django进行组合,识别和加载django的配置文件 os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'celeryPros.settings.dev') # 通过app对象加载配置 app.config_from_object("mycelerys.config") # 加载任务 # 参数必须必须是一个列表,里面的每一个任务都是任务的路径名称 # app.autodiscover_tasks(["任务1","任务2"]) app.autodiscover_tasks(["mycelerys.sms",]) # 启动Celery的命令 # 强烈建议切换目录到mycelery根目录下启动 # celery -A mycelery.main worker --loglevel=info -P eventlet -
tasks.py(任务文件)
# celery的任务必须写在tasks.py的文件中,别的文件名称不识别!!! from mycelerys.main import app import time import logging log = logging.getLogger("django") @app.task # name表示设置任务的名称,如果不填写,则默认使用函数名做为任务名 def send_sms(mobile): """发送短信""" print("向手机号%s发送短信成功!"%mobile) time.sleep(5) return "send_sms OK" @app.task # name表示设置任务的名称,如果不填写,则默认使用函数名做为任务名 def send_sms2(mobile): print("向手机号%s发送短信成功!" % mobile) time.sleep(5) return "send_sms2 OK"- 注意,任务文件必须为tasks.py,当有多个任务时,要重新创建python包,在包下创建tasks.py文件
-
Django视图调用,views.py
from datetime import datetime,timedelta from django.http import HttpResponse from django.shortcuts import render from mycelerys.sms.tasks import send_sms, send_sms2 def test(request): # 异步任务 # send_sms.delay("110") # send_sms2.delay("119") # send_sms.delay() 如果调用的任务函数没有参数,则不需要填写任何内容 # 定时任务 ctime = datetime.now() # 默认用utc时间 utc_ctime = datetime.utcfromtimestamp(ctime.timestamp()) time_delay = timedelta(seconds=10) task_time = utc_ctime + time_delay result = send_sms.apply_async(["911", ], eta=task_time) print(result.id) return HttpResponse("ok")
本文介绍Celery的基础概念、安装配置及使用方法,涵盖异步任务处理、定时任务设定等内容,并演示如何在Django项目中集成Celery。
![[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-5kyQBXN7-1600409181871)(C:\Users\Outlierwu\AppData\Roaming\Typora\typora-user-images\image-20200918104506593.png)]](https://i-blog.csdnimg.cn/blog_migrate/7f3634c0b0ae50623594a22dfa1f2ae9.png#pic_center)
3820

被折叠的 条评论
为什么被折叠?



