
人工智能理论算法栏
文章平均质量分 94
唤醒手腕人工智能、机器学习、深度学习相关内容。
唤醒手腕
断剑留不住落樱,银枪挑不起离愁,折笔舞不出相思,此乃唤醒手腕!
展开
-
唤醒手腕 - 人工智能 - 决策树(Decision Tree)更新中
划分数据集的大原则是将无序数据变得更加有序,但是各种方法都有各自的优缺点,信息论是量化处理信息的分支科学,在划分数据集前后信息发生的变化称为信息增益,获得信息增益最高的特征就是最好的选择,所以必须先学习如何计算信息增益,集合信息的度量方式称为香农熵,或者简称熵。用决策树分类从根节点开始,对实例的某一特征进行测试,根据测试结果将实例分配到其子节点,此时每个子节点对应着该特征的一个取值,如此递归的对实例进行测试并分配,直到到达叶节点,最后将实例分到叶节点的类中。决策树学习损失函数正则化的极大似然函数。...原创 2022-07-29 12:52:52 · 182 阅读 · 0 评论 -
唤醒手腕 - 爆肝 3 天整理出来关于 Opencv 计算机图像处理详细教程(更新中)
OpenCV 是一个开源的计算机视觉库,OpenCV 库用C语言和 C++ 语言编写,可以在 Windows、Linux、Mac OS X 等系统运行。同时也在积极开发 Python、Java、Matlab 以及其他一些语言的接口,将库导入安卓和 iOS 中为移动设备开发应用。OpenCV 库包含从计算机视觉各个领域衍生出来的 500 多个函数,包括工业产品质量检验、医学图像处理、安保领域、交互操作、相机校正、双目视觉以及机器人学。首先我们来安装我们需要的模块:pip的仓库一般都是在国外的服务器上,加了镜像原创 2022-06-15 16:43:20 · 785 阅读 · 1 评论 -
唤醒手腕 - 人工智能 - 计算机视觉、Opencv 图像处理技术(更新中···)
什么是计算机视觉?计算机视觉(Computer Vision)是指用计算机实现人的视觉功能——对客观世界的三维场景的感知、识别和理解。这意味着计算机视觉技术的研究目标是使计算机具有通过二维图像认知三维环境信息的能力。因此不仅需要使机器能感知三维环境中物体的几何信息(形状、位置、姿态、运动等)而且能对它们进行描述、存储、识别与理解。可以认为,计算机视觉与研究人类或动物的视觉是不同的:它借助于几何、物理和学习技术来构筑模型,用统计的方法来处理数据。人工智能的完整闭环包括感知、认知、推理再反馈到感知的过程,其中视原创 2022-06-14 22:26:22 · 582 阅读 · 0 评论 -
唤醒手腕 - 人工智能 - 凸优化、损失函数、概率、激活函数、泛化拟合、回归分类 ···
特征、样本、数据集:特征是用来描述机器学习系统处理的对象或事件的特性。:样本是指我们从某些希望机器学习系统处理的对象或事件中收集到的已经量化的特征的集合。:数据集是指很多样本组成的集合。有时我们也将样本称为数据集中的数据点(Data Point) 。大部分机器学习算法可以被理解为在数据集上获取经验。监督学习算法 与 无监督学习算法:训练含有很多特征的数据集,不过数据集中的样本都有一个标签(Label)或目标(Target)。:训练含有很多特征的数据集,然后学习出这个数据集上有用的结构性质。监督的理解:监督学原创 2022-06-14 17:47:51 · 808 阅读 · 0 评论 -
唤醒手腕 - 人工智能篇 - Python Numpy 数据处理库 详细介绍
NumPy 是一个 Python 包, 它代表 “Numeric Python”。 它是一个由多维数组对象和用于处理数组的例程集合组成的库,Numpy 是 python 用于数据技术最通用的第三方库,其核心优势在于它提供了用于复杂数据对象处理的N维数组的对象类型,以及各类相关的函数和方法。主要用途:机器学习模型:在编写机器学习算法时,需要对矩阵进行各种数值计算。例如矩阵乘法、换位、加法等。NumPy提供了一个非常好的库,用于简单(在编写代码方面)和快速(在速度方面)计算。NumPy数组用于存储训练数据和机器原创 2022-06-14 16:22:14 · 359 阅读 · 0 评论 -
唤醒手腕 - 机器学习 - 人工神经网络(Artificial Neural Network)
神经网络是一门重要的机器学习技术。它是目前最为火热的研究方向–深度学习的基础。学习神经网络不仅可以让你掌握一门强大的机器学习方法,同时也可以更好地帮助你理解深度学习技术。人工神经网络(Artificial Neural Network),是一种模仿生物神经网络的结构和功能的数学模型或计算模型。神经网络由大量的人工神经元联结进行计算。大多数情况下人工神经网络能在外界信息的基础上改变内部结构,是一种自适应系统。现代神经网络是一种非线性统计性数据建模工具,常用来对输入和输出间复杂的关系进行建模,或用来探索数据的模原创 2022-06-14 00:29:37 · 364 阅读 · 0 评论 -
唤醒手腕 - 机器学习 - 支持向量机学习笔记(Support Vector Machine)更新中
支持向量机的英文名称是 Support Vector Machine,简称 SVM。SVM 是在20世纪90年代由 Vapnik 提出来的,它是基于统计学习理论(Statistical Learning Theory),有很好的数学基础支撑。支持向量机 SVM 中最重要的就是核函数了,正是有了核函数,使得 SVM 的泛华能力有了很好的表现。要想提高 SVM 的性能,关键在于核函数,要求设计适合某一个特定问题的核函数,这就要求对核函数有足够的了解。决策边界:选出来离雷区最远的(雷区就是边界上的点,要 Larg原创 2022-06-13 17:15:10 · 244 阅读 · 0 评论 -
唤醒手腕 - 机器学习概念基本介绍、算法过程、支持向量机(SVM)原理介绍
什么是机器学习?Arthur Samuel 所定义的机器学习,是专指这种非显著式编程的方式。机器学习是这样的领域,它赋予计算机学习的能力,(这种学习能力)是通过非显著式编程获得的。(1) :所有的经验都是人为搜集起来并输入计算机的,最终为训练数据打上标签或者进行预测。例如识别垃圾邮件、人脸识别、图像识别、天气预测、污染物浓度预测等。若我们欲预测的是离散值,例如“垃圾邮件”和“正常邮件”,此类学习任务称为“分类”;若欲预测的是连续值,例如污染物浓度1.5%,4.8%,此类学习任务称为“回归”。传统的监督学习包原创 2022-06-12 16:00:13 · 553 阅读 · 0 评论