labelme中应用Al工具win10出现闪退,主要原因是如果本地无法连接外网,会报错

本文介绍了在Python虚拟环境下进行AI模型本地部署的方法。需在特定路径下载6个对应模型,保存到新建目录,修改_init_.py文件路径,再修改labelme\widgets\canvas.py文件中的initializeAiModel函数内容,部署后可使用AI绘制,建议选用除speed外的模型。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1、下载Al模型

一般是虚拟环境下,比如C:\anaconda\envs\labelme\Lib\site-packages\labelme\ai\_init_.py,可以看到有这6个对应的模型,分别复制地址下载,将下载后的模型保对应的C:\anaconda\envs\labelme\Lib\site-packages\labelme\model_file(该文件新建)目录下

 

返回刚才的 _init_.py文件,将路径修改为对应的r“C:\anaconda\envs\labelme\Lib\site-packages\labelme\model_file\sam_vit_b_01ec64.quantized.encoder.onnx”

 接下来修改 labelme\widgets\canvas.py文件中的 initializeAiModel函数,修改函数内容

这样将模型本地部署,再次打开labelme可用Al绘制,该Al主要由SAM大模型,这里不建议使用speed模型标注,请选用另外两模型

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值