1、基本卷积神经网络
1.1 AlexNet
1.1.1 网络结构
AlexNet网络一共有8层可学习层——5层卷积和3层全连接,随网络的深入,通道宽、高衰减,通道数增加。
相比较LeNet网络,AlexNet网络具有以下优点:
- 池化层均采用最大池化
- 选用ReLu函数作为非线性环节激活函数
- 网络规模扩大
- 出现多个卷积层+一个池化层的结构
1.1.2 网络改进
(1) 改进输入样本
(2)改进激活函数
(3)增加Dropout层
(4)双GPU策略
1.2 VGG-16
1.3 残差网络
2、常用数据集
2.1 MNIST
2.2 CIFAR-10数据集
CIFAR-10数据集由10个类的60000个32x32彩色图像组成,每个类有6000个图像。有50000个训练图像和10000个测试图像数据集分为五个训练批次和一个测试批次,每个批次有10000个图像。测试批次包含来自每个类别的恰好1000个随机选择的图像。