1、冒泡法
#include<iostream>
using namespace std;
int main(){
int n;
cin>>n;
int *an=new int[n];
for(int i=0;i<n;i++)cin>>an[i];
for(int i=n-1;i>=0;i--){
int flag=1;//如果在一次循环中没有发生交换则直接退出
for(int j=0;j<i;j++){
if(an[j]>an[j+1]){
flag=0;
int t=an[j];
an[j]=an[j+1];
an[j+1]=t;
}
}
if(flag)break;
}
for(int i=0;i<n;i++)cout<<an[i]<<" ";
return 0;
}
时间复杂度:最好O(N)、最坏O(N2)
优点:可以对链表进行排序,稳定。
2、插入排序
#include<iostream>
using namespace std;
int main(){
int n,j;
cin>>n;
int *an=new int[n];
for(int i=0;i<n;i++)cin>>an[i];
for(int i=1;i<n;i++){
int tem=an[i];
for(j=i;j>0&&an[j-1]>tem;j--)
an[j]=an[j-1];
an[j]=tem;
}
for(int i=0;i<n;i++)cout<<an[i]<<" ";
return 0;
}
时间复杂度:最好O(N)、最坏O(N2)
优点:对于一个基本排好序的数组效率很高
3、希尔排序
#include<iostream>
using namespace std;
int main(){
int n,j;
cin>>n;
int *an=new int[n];
for(int i=0;i<n;i++)cin>>an[i];
for(int x=n/2;x>0;x/=2){//在插入排序的基础上加上这一行,并将i取值改为x
for(int i=x;i<n;i++){
int tem=an[i];
for(j=i;j>=x&&an[j-x]>tem;j-=x)
an[j]=an[j-x];
an[j]=tem;
}
}
for(int i=0;i<n;i++)cout<<an[i]<<" ";
return 0;
}
优点:在需要排序的数据量很大时使用希尔排序和合适的增量序列(增量序列就是每次x的取值)可以提高效率。
4、堆排序
#include <iostream>
#include <algorithm>
using namespace std;
void max_heapify(int arr[], int start, int end) {
int dad = start;
int son = dad * 2 + 1;
while (son <= end) { // 若子節點指標在範圍內才做比較
if (son + 1 <= end && arr[son] < arr[son + 1]) // 先比較兩個子節點大小,選擇最大的
son++;
if (arr[dad] > arr[son]) // 如果父節點大於子節點代表調整完畢,直接跳出函數
return;
else { // 否則交換父子內容再繼續子節點和孫節點比較
swap(arr[dad], arr[son]);
dad = son;
son = dad * 2 + 1;
}
}
}
void heap_sort(int arr[], int len) {
// 初始化,i從最後一個父節點開始調整
for (int i = len / 2 - 1; i >= 0; i--)
max_heapify(arr, i, len - 1);
// 先將第一個元素和已经排好的元素前一位做交換,再從新調整(刚调整的元素之前的元素),直到排序完畢
for (int i = len - 1; i > 0; i--) {
swap(arr[0], arr[i]);
max_heapify(arr, 0, i - 1);
}
}
int main() {
int arr[] = { 3, 5, 3, 0, 8, 6, 1, 5, 8, 6, 2, 4, 9, 4, 7, 0, 1, 8, 9, 7, 3, 1, 2, 5, 9, 7, 4, 0, 2, 6 };
int len = (int) sizeof(arr) / sizeof(*arr);
heap_sort(arr, len);
for (int i = 0; i < len; i++)
cout << arr[i] << ' ';
cout << endl;
return 0;
}
时间复杂度:O(NlogN)
5、归并排序
#include<iostream>
using namespace std;
void bing(int a[],int first,int mid,int last,int tem[]){
int i=first,j=mid+1,m=mid,n=last,k=0;
while(i<=m&&j<=n){
if(a[i]<=a[j])tem[k++]=a[i++];
else tem[k++]=a[j++];
}
while(i<=m)tem[k++]=a[i++];
while(j<=n)tem[k++]=a[j++];
for(int i=0;i<k;i++)a[first+i]=tem[i];
}
void gui(int a[],int first,int last,int tem[]){
if(first<last){
int mid=(first+last)/2;
gui(a,first,mid,tem);
gui(a,mid+1,last,tem);
bing(a,first,mid,last,tem);
}
}
bool binggui(int a[],int n){
int *p=new int[n];
if(p==nullptr)return false;
gui(a,0,n-1,p);
delete[] p;
return true;
}
int main(){
int n;
cin>>n;
int *a=new int[n];
for(int i=0;i<n;i++)cin>>a[i];
binggui(a,n);
for(int i=0;i<n;i++)cout<<a[i]<<" ";
return 0;
}
时间复杂度:O(NlogN),没有最好最坏之分,稳定,在外排序中特别有用
6、快速排序
#include<iostream>
using namespace std;
void qu(int a[],int first,int last){//快速排序
if(first<last){
int i=first,j=last,x=a[first];
while(i<j){
while(i<j&&a[j]>=x)j--;
if(i<j)a[i++]=a[j];
while(i<j&&a[i]<=x)i++;
if(i<j)a[j--]=a[i];
}
a[i]=x;
qu(a,first,i-1);
qu(a,i+1,last);
}
}
int main(){
int n;
cin>>n;
int *a=new int[n];
for(int i=0;i<n;i++)a[i]=rand()%101;//用随机数生成随机数
qu(a,0,n-1);//排序
for(int i=0;i<n;i++)cout<<a[i]<<" ";//输出排序之后的数组
return 0;
}
时间复杂度:最好:O(NlongN)、最坏:O(N2)、平均:O(NlogN)
优点:快,尤其是数据量大的时候(我测试了一下,随机生成数组数据,当数组大小为10万时,冒泡排序用时为32秒,快速排序用时小于1秒,当数组大小为100万时,快速排序用时为10秒左右,冒泡没敢试。。。)
7、计数排序
#include<iostream>
#include<cstring>
using namespace std;
void jiuu(int a[],int n){
int max=a[0],min=a[0];
for(int i=0;i<n;i++){
if(a[i]>max)max=a[i];
if(a[i]<min)min=a[i];
}
int range=max-min+1;
int *count=new int[range];
memset(count,0,sizeof(int)*range);
for(int i=0;i<n;i++)count[a[i]-min]++;
int j=0;
for(int i=0;i<range;i++){
while((count[i]--)>0){
a[j++]=i+min;
}
}
}
int main(){
int n;
cin>>n;
int *a=new int[n];
for(int i=0;i<n;i++)a[i]=rand()%101;//用随机数生成随机数
jiuu(a,n);
for(int i=0;i<n;i++)cout<<a[i]<<" ";//输出排序之后的数组
return 0;
}