算法-堆、排序算法(快速排序、归并排序)、矩阵乘法

注:Adbul Bari算法视频

完美二叉树、完全二叉树

完美二叉树(满二叉树):所有层都填满,节点数最大。深度为h,节点有20+21+……+2h= 2(h+1)-1个。如下图节点数=2(3+1)-1=15个
在这里插入图片描述

完全二叉树:除了最后一层,其余层都填满,最后一层要靠左。

  • 下图数组的表示,前两个为完全,最后一个非完全,因为左边缺失元素了。
  • 完美二叉树也是一种完全二叉树。
  • 一般时间复杂度正比于树高。完全二叉树树高[logn] 向下取整。完全二叉树树高最小[logn],树高最大n。
     

使用数组表示完全二叉树遵循下面的规律,当前节点i:

  • 左节点为     2i+1
  • 右节点为     2i+2
    请添加图片描述
    (高度深度是0,还是1开始,只是一个表示不重要,但一般用0。0算的是路径数,1算的是经过节点数)

判断是不是完全二叉树:
请添加图片描述

堆是完全二叉树!!
最大堆:父节点要大于或等于后面所有子节点。
最小堆:父节点要小于或等于后面所有子节点。

最大堆的插入、删除

最大堆的插入:

  • 60首先插入最后的叶子节点,与父节点比较,比父节点大则交换位置,直到到达正确的位置。
  • 时间复杂度就是交换的次数:例子是3次即树深logn。堆插入的时间复杂度O(1)~O(logn)。

最大堆的删除:

  • 假如去水果店买苹果,苹果像金字塔一样排列,最好的苹果在金字塔的尖上。那我们最大堆的最大元素在根节点,只能移除根节点即50。移除根元素后不能随意的让30往上顶,这样就不满足完全二叉树。
  • 正确做法:将最后的叶子节点挪到根节点,然后子节点相互比较,最大值与父节点比较并交换,直到满足最大堆的条件。堆删除时间复杂度O(logn)。
  • 若删除中间元素,首先要遍历找到要删除的元素(n),跟末尾元素交换并删除,后再调整log(n)。由于二叉堆无顺,查找要消耗O(n),一般不推荐使用二叉堆进行查找。

请添加图片描述

堆创建、堆排序

由上堆删除可知:删除所有元素,并将元素放到删除后的空闲位置,就会发现数组已排序。
堆排序的时间复杂度是O(nlogn)、O(n)
请添加图片描述

优先级队列

数字本身就有优先级:

  • 数字大的优先级更高,那就使用最大堆进行分析
  • 数字小的优先级更高,那就使用最小堆进行分析(删除和插入)

这将是最好的数据结构,否则需要的可能是O(n),而现在是O(logn)。

归并排序

合并:两个及以上有序列表合并成一个有序列表的过程。

2-way merge sort

1.例子:有两个有序列表A,B,合成列表C
请添加图片描述

merge(A,B,m,n){
  i=1;j=1;k=1;
  while(i<=n && j<=m){
    if(A[i]<=B[j]){
      C[k]=A[i];
      k++;i++;
    }else{
      C[k]=B[j];
      k++;j++;
    }
  }
  for(;j<=m;j++){
    C[k]=B[j];
    k++;
  }
}

时间复杂度O(m+n)

2.M路合并:多个列表合并。采取的就是两两合并(2-way merge sort),可以任意两个如下:
请添加图片描述
请添加图片描述

merge sort

分而治之思想,先拆分后合并
请添加图片描述

优缺点

优点:

  • 适合大列表

  • 适合链表(可以在不创建新链表的情况下进行排序)
    请添加图片描述

  • 外部排序(每次带入一部分元素块进入主内存,主内存就不需要那么大空间)
    请添加图片描述

  • 稳定(同样的数字保持原来的顺序)

缺点:

  • 数组进行排序,需要额外的空间
  • 不适合小问题(元素很少,不需要拆分,那么会在递归上浪费时间。借用插入排序来得到结果)
  • 递归(会使用内存的堆栈,需要的堆栈空间=树高logn,再加上第一点的额外空间O(n+logn)渐进O(n))

实例编写

链表排序

快速排序

基础逻辑

遵循分而治之。
分区位置:某一元素左边的元素都比他小,右边都比他大,那么他就处于排序位置。
分区算法:找到分区位置,i是直到找到比核心更大的,j是直到找到比核心更小的,交换位置。过程如下:
请添加图片描述

//分区算法
partition(l,h){
  pivot=A[l];
  i=l;j=h;
  while(i<j){
   while(A[i]>pivot && i<j){
     j--;
   }
   while(A[i]<=pivot && i<j){
     i++;
   }
   swap(A[i],A[j]);
  }
  swap(A[l],A[j]);
  return j;
}

//快速排序
QuickSort(l,h){
  if(l<h){
    j=partition(l,h);
    QuickSort(l,j-1);
    QuickSort(j+1,h);
  }
}

实例编写

合并两个有序数组

题目:给你两个按非递减顺序排列的整数数组 nums1和nums2, m和n分别表示 nums1 和 nums2 中的元素数目。
合并 nums2 到 nums1 中,使合并后的数组同样按非递减顺序排列。
(这道题有很多解法,不妨用快排练练手)
import java.util.Arrays;
public class test{
	public int[] merge(int[] nums1, int m, int[] nums2, int n) {
	    for(int i =0 ;i<n;i++){
	        nums1[m+i] = nums2[i];
	    }
	    quickSort(nums1,0,n+m-1);
	    return nums1;
	}
	
	public void quickSort(int[] nums1,int l,int h){
	    if(l<h){
	        int j = partition(nums1,l,h);
	        quickSort(nums1,l,j-1);
	        quickSort(nums1,j+1,h);
	    }
	}
	
	public int partition(int[] nums1,int l,int h){
	    int pivot = nums1[l];
	    int i = l;
	    int j = h;
	    while(i<j){
	        while(nums1[j]>pivot && i<j){
	            j--;
	        }
	        while(nums1[i]<=pivot && i<j){
	            i++;
	        }
	        int temp = nums1[i];
	        nums1[i] = nums1[j];
	        nums1[j] = temp;
	    }
	    nums1[l]=nums1[j];
	    nums1[j]=pivot;
	    return j;
	}
	
	
	public static void main(String[] args) {
	    int[] nums1 = {1,2,3,0,0,0};
	    int[] nums2 = {2,5,6};
	    test test = new test();
	    int[] merge = test.merge(nums1, 3, nums2, 3);
	    System.out.println(Arrays.toString(merge));
	}
}

分析时间复杂度

best case-----O(nlogn) 分区后j一直取中间(这种情况很难遇见)
worst case—O(n2)
请添加图片描述

为了避免最坏情况可以一直选择中间作为核心元素,或随机选择核心元素
快速排序用了递归,占用堆栈空间logn 到 n(树高)

矩阵乘法

1.使用简单方法,三个循环,O(n3)
2.采用分而治之,最小单位就是小于等于2x2的矩阵,直接就用公式不用循环,公式的话是4行,可以说时间常数就是O(4)。
3.不满足的矩阵可以补0成为4x4,8x8等等的矩阵,然后采取分而治之。
请添加图片描述

mm(A,B,n){
  if(n<=2){
    c=4 formulas;
  }esle{
    //拆分再合并
    mid=n/2;
    mm(A11,B11,mid)+mm(A12,B21,mid);
    mm(A11,B12,mid)+mm(A12,B22,mid);
    mm(A21,B11,mid)+mm(A22,B21,mid);
    mm(A21,B12,mid)+mm(A22,B22,mid);
  }
}

分治算法的矩阵乘法也是O(n3),采用了递归还会额外占用堆栈
请添加图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值