一文讲透算法中的背包问题


前言

对于学习算法的小伙伴来说,背包问题是绕不过去的一道槛,针对常见的背包问题,结合自身学习过程中遇到的感悟,总结了常见背包问题的种类和变形,给出了相关的代码实现~


一、背包问题种类

在这里插入图片描述

二、背包问题算法模板

1.01背包问题

f(i, j) 表示从前 i 种物品中选择且总体积不超过 j 的方案
属性:max 价值

for (int i = 1; i <= N; i ++) {
	for (int j = 1; j <= V; j++) {
    	if (j < v[i]) {
        	f[i][j] = f[i - 1][j];
        }else{
            f[i][j] = max(f[i - 1][j], f[i - 1][j - v[i]] + w[i]);
        }
     }
}

一维写法:

for (int i = 1; i <= N; i ++) {   
    for (int j = V; j >= v[i]; j --) {    //需要用上一层的结果,由大到小枚举体积,这样来保证使用的上一层数据
        f[j] = max(f[j], f[j - v[i]] + w[i]);   // 保证了f[j-v[i]]是f[i-1][j-v[i]]的结果
    }
}

2.完全背包问题

// 所选物品没有个数限制
for (int i = 1; i <= N; i++) {
	for (int j = 1; j <= V; j ++) {
		for (int k = 0; k * v[i] <= j; k ++) {
			f[i][j] = max(f[i][j], f[i - 1][j - k * v[i]] + k * w[i]);   // 枚举选的个数
        }
    }
}

优化方法:公式规律

f[i][j]=	max(f[i-1][j],f[i-1][j-v]+w,f[i-1][j-2v]+2w,f[i-1][j-3v]+3w,...)
f[i][j-v]+w=max(		  f[i-1][j-v]+w,f[i-1][j-2v]+2w,f[i-1][j-3v]+3w,...)
    
f[i][j]=max(f[i-1][j],f[i][j-v]+w)
    
    
    
for (int i = 1; i <= N; i ++) {
	for (int j = 1; j <= V; j ++) {
		if (j < v[i]) {     
			f[i][j] = f[i - 1][j];
		} else {                                       
			f[i][j] = max(f[i - 1][j], f[i][j - v[i]] + w[i]);    // 当 j >= v[i]时,[j - v[i]]才会存在
		}
	}
}

一维写法:

for (int i = 1; i <= N; i ++) {
	for (int j = v[i]; j <= V; j ++) {   //使用的是本层的结果,由小到大枚举体积
    	f[j] = max(f[j], f[j - v[i]] + w[i]);
    }
}

3.分组背包问题

// 每组物品有若干个,同一组内的物品最多只能选一个
for (int i = 1; i <= n; i ++) {
	for (int j = 1; j <= m; j ++) {
		f[i][j] = f[i - 1][j];  //不选第i组中的物品
		for (int k = 1; k <= s[i]; k ++){  //选择第i组中的第k个物品,做一个比较
			if (j >= v[i][k]) {
				f[i][j] = max(f[i][j], f[i - 1][j - v[i][k]] + w[i][k]);  
            }
        }
    }
}

4.有依赖背包问题

​ 树形dp问题

5.多重背包问题1

// 所选物品有最大个数限制
for(int i = 1; i <= N; i ++) {
	for(int j = 1; j <= V; j ++) {
		for(int k = 0; k <= s[i] && v[i] * k <= j; k ++) {    //和完全背包相比多了一个最大个数的限制
			f[i][j] = max(f[i][j], f[i - 1][j - k * v[i]] + k * w[i]);
        }
    }
}

6.多重背包问题2

核心思想:二进制优化,将多重背包问题优化成01背包问题,有一说一挺妙的
比如说第i个物品有200个,二进制划分成 1,2,4,8,16,32,64,73 共八份,通过这八份选或不选可以组成0-200中的所有数

// a[i]表示体积,b[i]表示价值
int cnt = 0;
for (int i = 1; i <= n; i ++) {
	int v, w, s;
    cin >> v >> w >> s;
    int k = 1;
    while (k <= s) {
    	cnt ++;
        a[cnt] = k * v;
        b[cnt] = k * w;
        s -= k;
        k *= 2;
    }
   	if (s > 0) {
		cnt ++;
		a[cnt] = s * v;
		b[cnt] = s * w;
            
    }
}
n = cnt;

// 接下来01背包的过程省略

7.多重背包问题3

​ 单调队列优化背包问题

8.混合背包问题

01背包: f[i][j] = max(f[i-1][j], f[i-1][j-v]+w)
多重背包:f[i][j] = max(f[i-1][j], f[i-1][j-v]+w, f[i-1][j-2v]+2w,.....f[i-1][j-kv]+kv)
完全背包:f[i][j] = max(f[i-1][j], f[i][j-v]+w)


01背包和多重背包可以合并在一起当作多重背包处理,其中多重背包用二进制进行优化

9.二维费用背包问题

​ 二维费用问题实质上和一维费用问题没有任何区别,多一个维度表示新的限制罢了

10.求具体方案的背包问题

​ 1.循环倒过来

​ 2.dp过程中用一个新数组记录

11.求最优解方案数的背包问题

​ 状态表示:除了原有的 f(i, j),还需要 g(i, j) 表示 f(i, j) 达到最大值的方案数

​ 状态划分:第一类如果不选第 i 个物品达到最大值,则加上g(i-1, j) ;第二类如果选第 i 个物品达到最大值,则加上g(i-1, j-v)


总结

本文仅用于学习交流记录,欢迎各位小伙伴来讨论~
上述内容是大学期间在Acwing算法平台学习背包问题时的一些收获,与大家共同分享~

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值