栈
介绍
- 栈的英文为-stack
- 栈是一个先入后出的有序列表(FILO-First In Last Out)
- 栈是限制线性表中元素的插入和删除只能在线性表的同一端进行的特殊线性表。允许插入和删除的一端,称为变化的一端,称为栈顶(Top),另一端,称为栈底
- 根据栈的定义可知,最先放入栈中元素在栈底,最后放入的元素在栈顶,二删除元素刚好相反,最后放入的元素最先删除,最先放入的元素最后删除.
栈的几种主要基本操作
- void push(int data):入栈(将数据data插入到栈中)
- int pop():出栈(删除并返回最后一个插入栈的元素)
- int top():返回最后一个插入栈的元素,但不删除
- int size():返回存储在栈中的元素个数
- boolean isEmpty():返回栈是否是空栈
- boolean isFull():返回是否是满栈
- void Clear():清除整个栈
栈的应用
- 符号匹配
- HTML和XML文件中的标签匹配(实质还是符号匹配)
- 实现函数调用
- 文本编辑器中的撤销
- 网页浏览器中已访问页面的历史记录
- 作为一个算法的辅助数据结构
栈的几种实现方式
- 基于简单数组的实现方式
- 基于动态数组的实现方式
- 基于链表的实现方式
- 基于队列的实现方式
基于数组实现(模拟)
基于简单数组实现一个栈,其基本思路是这样的:从左至右向数组中添加所有的元素,并定义一个变量用来记录数组当前栈顶(top)元素的下标。当数组存满了栈元素时,执行入栈(插入元素)操作将抛出栈满异常;当对一个没有存储栈元素的数组执行出栈(删除元素)操作将抛出栈空异常,当然,这种实现方式有一个很明显的局限性。那就是:栈的最大空间必须预先声明且不能改变。试图对一个满栈执行入栈操作将会产生异常。
//定义一个 ArrayStack 表示栈
class ArrayStack {
private int maxSize; // 栈的大小
private int[] stack; // 数组,数组模拟栈,数据就放在该数组
private int top = -1;// top表示栈顶,初始化为-1
//构造器
public ArrayStack(int maxSize) {
this.maxSize = maxSize;
stack = new int[this.maxSize];
}
//栈满
public boolean isFull() {
return top == maxSize - 1;
}
//栈空
public boolean isEmpty() {
return top == -1;
}
//入栈-push
public void push(int value) {
//先判断栈是否满
if(isFull()) {
System.out.println("栈满");
return;
}
top++;
stack[top] = value;
}
//出栈-pop, 将栈顶的数据返回
public int pop() {
//先判断栈是否空
if(isEmpty()) {
//抛出异常
throw new RuntimeException("栈空,没有数据~");
}
int value = stack[top];
top--;
return value;
}
//显示栈的情况[遍历栈], 遍历时,需要从栈顶开始显示数据
public void list() {
if(isEmpty()) {
System.out.println("栈空,没有数据~~");
return;
}
//需要从栈顶开始显示数据
for(int i = top; i >= 0 ; i--) {
System.out.printf("stack[%d]=%d\n", i, stack[i]);
}
}
}
基于动态数组的实现:
基于动态数组的实现一个栈,其基本思路跟上面类似。不同的是,这种方式下当数组中存储的元素达到一定量时(如:数组空间的0.75或者整个数组空间),这时我们通常会选择新建一个比原数组空间大一倍的新数组,然后将原数组按照原来的顺序复制进去,接着便可以继续进行入栈操作了。
import p1.Stack;(上方的Stack包)
import java.util.Iterator;
public class ArrayStack<E> implements Stack<E> {
//定义私有变量List
private ArrayList<E> list;
//默认构造
public ArrayStack() {
list = new ArrayList<>();
}
//自己定义数组长度
public ArrayStack(int capacity) {
list = new ArrayList<>(capacity);
}
//size实现
@Override
public int size() {
return list.size();
}
//判空实现
@Override
public boolean isEmpty() {
return list.isEmpty();
}
//push方法
@Override
public void push(E element) {
list.add(element);
}
//pop方法实现
@Override
public E pop() {
return list.remove(list.size() - 1);
}
//peek实现
@Override
public E peek() {
return list.get(list.size() - 1);
}
//clear方法
@Override
public void clear() {
list.clear();
}
//迭代方法
@Override
public Iterator<E> iterator() {
return list.iterator();
}
//toString方法实现
@Override
public String toString() {
return list.toString();
}
//继承Object equals方法
@Override
public boolean equals(Object o) {
if (o == null) {
return false;
}
if (this == o) {
return true;
}
if (o instanceof ArrayStack) {
ArrayStack other = (ArrayStack) o;
return this.list.equals(other.list);
}
return false;
}
}
基于链表的实现
基于链表实现一个栈,其基本思路是这样的:通过在链表的表头插入元素的方式来实现push操作;通过删除链表的表头节点的方式来实现pop操作.
public class SinglyNode<K extends Object> {
private K data; // 数据
private SinglyNode<K> next; // 该节点的下个节点
public SinglyNode(K data) {
this.data = data;
}
public SinglyNode(K data, SinglyNode<K> next) {
this.data = data;
this.next = next;
}
public K getData() {
return data;
}
public void setData(K data) {
this.data = data;
}
public SinglyNode<K> getNext() {
return next;
}
public void setNext(SinglyNode<K> next) {
this.next = next;
}
@Override
public String toString() {
return "SinglyNode [data=" + data + "]";
}
}
public class LinkStack<K extends Object> implements Stack<K> {
private SinglyNode<K> headNode;
//是否为满栈
public boolean isFull() {
return false;
}
//是否为空
public boolean isEmpty(){
return headNode == null ? true : false;
}
//入栈
public void push(K data){
if(headNode == null){
headNode = new SinglyNode<K>(data);
}else{
SinglyNode<K> newNode = new SinglyNode<K>(data);
newNode.setNext(headNode);
headNode = newNode;
}
}
//出栈
public K pop(){
if(headNode == null){
throw new EmptyStackException();
}else{
K data = headNode.getData();
headNode = headNode.getNext();
return data;
}
}
//返回栈顶元素
public K top(){
if(headNode == null){
throw new EmptyStackException();
}else{
return headNode.getData();
}
}
//返回栈中元素个数
public int size(){
if(headNode == null){
return 0;
}else{
int length = 0;
SinglyNode<K> currentNode = headNode;
while (currentNode != null) {
length++;
currentNode = currentNode.getNext();
}
return length;
}
}
//清空栈
public void ClearStack(){
headNode = null;
}
//遍历栈从前往后
@Override
public void print() {
SinglyNode<K> tmpNode = headNode;
printFromEnd(tmpNode);
}
//遍历栈从后往前
public void printFromEnd(SinglyNode<K> headNode){
if(headNode != null){
if(headNode.getNext() != null){
printFromEnd(headNode.getNext());
}
System.out.print(headNode.getData() + " ");
}
}
}
基于数组实现和基于链表实现的比较
(1)基于数组实现的栈:
各个操作都是常数时间开销
每隔一段时间进行的倍增操作的时间开销较大
(2)基于链表实现的栈:
栈规模的增加和减小都很容易
各个操作都是常数时间开销
每个操作都需要使用额外的空间和时间开销来处理指针
基于队列实现栈
import java.util.Iterator;
//队列实现栈
public class QueueToStack {
public static void main(String[] args) {
StackImplByQueue<Integer> stack = new StackImplByQueue<>();
System.out.println(stack);
for (int i = 1; i <= 5; i++) {
stack.push(i); //队列A
}
System.out.println(stack.toString());
System.out.println(stack.pop());
System.out.println(stack); //队列B
}
}
class StackImplByQueue<E> implements Stack<E> { //上方的栈调用
private ArrayQueue<E> queueA;
private ArrayQueue<E> queueB;
public StackImplByQueue() {
queueA = new ArrayQueue<>();
queueB = new ArrayQueue<>();
}
@Override
public int size() {
if (queueA.isEmpty() && queueB.isEmpty()) {
return 0;
} else if (!queueA.isEmpty()) {
return queueA.size();
} else {
return queueB.size();
}
}
@Override
public boolean isEmpty() {
return queueA.isEmpty() && queueB.isEmpty();
}
@Override
public void push(E element) {
if (queueA.isEmpty() && queueB.isEmpty()) {
queueA.offer(element);
} else if (!queueA.isEmpty()) {
queueA.offer(element);
} else {
queueB.offer(element);
}
}
@Override
public E pop() {
if (isEmpty()) {
return null;
}
E ret = null;
if (!queueA.isEmpty()) {
while (queueA.size() != 1) {
queueB.offer(queueA.poll());
}
ret = queueA.poll();
} else {
while (queueB.size() != 1) {
queueA.offer(queueB.poll());
}
ret = queueB.poll();
}
return ret;
}
@Override
public E peek() {
if (isEmpty()) {
return null;
}
E ret = null;
if (!queueA.isEmpty()) {
while (queueA.size() != 1) {
queueB.offer(queueA.poll());
}
ret = queueA.poll();
queueB.offer(ret);
} else {
while (queueB.size() != 1) {
queueA.offer(queueB.poll());
}
ret = queueB.poll();
queueA.offer(ret);
}
return ret;
}
@Override
public void clear() {
queueA.clear();
queueB.clear();
}
@Override
public Iterator<E> iterator() {
if (isEmpty()) {
return queueA.iterator();
} else if (!queueA.isEmpty()) {
return queueA.iterator();
} else {
return queueB.iterator();
}
}
@Override
public String toString() {
if (isEmpty()) {
return "[]";
} else if (!queueA.isEmpty()) {
return queueA.toString();
} else {
return queueB.toString();
}
}
}
双端栈
双端栈定义:
是指一个线性表的两端当做栈底,分别进行入栈和出栈操作,主要利用了栈:栈底不变,栈顶变化的特征;
双端栈实现方法以及基本方法:
import java.util.Iterator;
//双端栈
public class ArrayDoubleEndStack<E> implements Iterable<E> {
//左端栈的栈顶
private int ltop;
//右端栈的栈顶
private int rtop;
//存储元素的容器
private E[] data;
//数组容器的默认容量
private static int DEFAULT_CAPACITY = 10;
//构造
public ArrayDoubleEndStack() {
data = (E[]) new Object[DEFAULT_CAPACITY];
ltop = -1;
rtop = data.length;
}
//左入栈
public void pushLeft(E element) {
if (ltop + 1 == rtop) {
resize(data.length * 2);
}
data[++ltop] = element;
}
//右入栈
public void pushRight(E element) {
if (ltop + 1 == rtop) {
resize(data.length * 2);
}
data[--rtop] = element;
}
//扩容
private void resize(int newLen) {
E[] newData = (E[]) new Object[newLen];
//复制左端栈的元素
for (int i = 0; i <= ltop; i++) {
newData[i] = data[i];
}
//复制右端栈的元素
int index = rtop;
for (int i = newLen - sizeRight(); i < newLen; i++) {
newData[i] = data[index++];
}
rtop = newLen - sizeRight();
data = newData;
}
//左出栈
public E popLeft() {
if (isLeftEmpty()) {
throw new IllegalArgumentException("left stack is null");
}
E ret = data[ltop--];
if (sizeLeft() + sizeRight() <= data.length / 4 && data.length > DEFAULT_CAPACITY) {
resize(data.length / 2);
}
return ret;
}
//右出栈
public E popRight() {
if (isRightEmpty()) {
throw new IllegalArgumentException("right stack is null");
}
E ret = data[rtop++];
if (sizeLeft() + sizeRight() <= data.length / 4 && data.length > DEFAULT_CAPACITY) {
resize(data.length / 2);
}
return ret;
}
//获取左栈顶
public E peekLeft() {
if (isLeftEmpty()) {
throw new IllegalArgumentException("left stack is null");
}
return data[ltop];
}
//获取右栈顶
public E peekRight() {
if (isRightEmpty()) {
throw new IllegalArgumentException("right stack is null");
}
return data[rtop];
}
//判断是否左边为空
public boolean isLeftEmpty() {
return ltop == -1;
}
//判断是否右边为空
public boolean isRightEmpty() {
return rtop == data.length;
}
//通过左指针获取长度
public int sizeLeft() {
return ltop + 1;
}
//通过右指针获取长度
public int sizeRigh() {
return data.length - rtop;
}
//重写toString方法
@Override
public String toString() {
StringBuilder sb = new StringBuilder();
sb.append('[');
if (isLeftEmpty() && isRightEmpty()) {
sb.append(']');
return sb.toString();
}
//先左边
for (int i = 0; i <= ltop; i++) {
sb.append(data[i]);
if (i == ltop && isRightEmpty()) {
sb.append(']');
return sb.toString();
} else {
sb.append(',');
}
}
//后右边
for (int i = rtop; i < data.length; i++) {
sb.append(data[i]);
if (i == data.length - 1) {
sb.append(']');
} else {
sb.append(',');
}
}
return sb.toString();
}
//迭代器
@Override
public Iterator<E> iterator() {
return new ArrayDoubleEndStackIterator();
}
class ArrayDoubleEndStackIterator implements Iterator<E> {
private ArrayList<E> list;
private Iterator<E> it;
public ArrayDoubleEndStackIterator() {
list = new ArrayList<>();
for (int i = 0; i <= ltop; i++) {
list.add(data[i]);
}
for (int i = rtop; i < data.length; i++) {
list.add(data[i]);
}
it = list.iterator();
}
@Override
public boolean hasNext() {
return it.hasNext();
}
@Override
public E next() {
return it.next();
}
}
}
双端栈的扩容与缩容问题;
双端栈A中有下标0-5的6个元素,对其进行扩容;
对其扩容时候,先考虑左边,从原来双端栈A的左边原封不动直接进入双端栈B,此时与双端栈A的左指针相同,皆为下标2,此时双端栈B的前3个元素不动,下标为【0,ltop】。
其次考虑右边的情况,通过观察,发现index为5的元素对应到11,所以即为newLen-1,而先前的rtop从双端栈A的3变到了双端栈B的9,可以观察到9 = 12 - 3;此时rtop = newLen - size(1)
这时候原先双端栈A的右边完全到了双端栈B的左边,完成了对双端栈A的扩容问题。
栈的相关应用
1.关于题解回文数;
给定一个字符串,判断是否该字符串是否是回文字符串,即"aba" 则为一个满足回文的条件;
public class JudgingPalindrome {
public static void main(String[] args) {
solution01();
System.out.println(solution02());
}
//通过栈的思想
private static void solution01() {
String text = "上海自来水来自海上";
ArrayStack<Character> stack = new ArrayStack<>();
//遍历栈中元素
for (int i = 0; i < text.length(); i++) {
//对于栈中元素是奇是偶进行判断
if (text.length() % 2 == 1 && i == text.length() / 2) {
continue;
}
char c = text.charAt(i);
//栈空进栈,相同时候元素弹出,不同时候进栈,判断最后是否栈为空,为空则回文
if (stack.isEmpty()) {
stack.push(c);
} else {
if (c != stack.peek()) {
stack.push(c);
} else {
stack.pop();
}
}
}
System.out.println(stack.isEmpty());
}
//通过双指针的思想
private static boolean solution02() {
String text = "上海自来水来自海上";
//头指针
int i = 0;
//尾指针
int j = text.length() - 1;
//循环条件,头尾同时进行,首位匹配下一位,不同则返回false;
while (true) {
if (text.charAt(i) == text.charAt(j)) {
i++;
j--;
} else {
return false;
}
//尾指针要小于等于头指针
if (j <= i) {
return true;
}
}
}
}
2.关于括号匹配问题
给定一些列括号‘(‘ ,’)’,‘【‘,’】’等,判断给定的括号串,是否完全匹配。如:“({()()})”;
//括号匹配
import java.util.HashMap;
public class MatchBracket {
public static void main(String[] args) {
solution01();
solution02();
}
//通过栈的思想解决
private static void solution01() {
String str = "{()[[()]]<>{}()<>}()";
ArrayStack<Character> stack = new ArrayStack<>();
//循环该数组下标,栈为空进栈
for (int i = 0; i < str.length(); i++) {
char c = str.charAt(i);
if (stack.isEmpty()) {
stack.push(c);
} else {
//当前栈顶
char top = stack.peek();
//通过ascll码匹配当满足条件时候,弹栈,即完成匹配
if (top - c == -1 || top - c == -2) {
stack.pop();
} else {
stack.push(c);
}
}
}
//当stack为空时候说明括号完全匹配
System.out.println(stack.isEmpty());
}
//通过HashMap实现
private static void solution02() {
String str = "{()[[()]]<{()>}()";
//给定hashmap的键值对应关系
HashMap<Character,Character> map = new HashMap<>();
map.put('[',']');
map.put('<','>');
map.put('(',')');
map.put('{','}');
ArrayStack<Character> stack = new ArrayStack<>();
//遍历和法1相同
for (int i = 0; i < str.length(); i++) {
char c = str.charAt(i);
if (stack.isEmpty()) {
stack.push(c);
} else {
char top = stack.peek();
//contains保证键值关系,包含时候,看c是否满足关系,满足时候弹栈,不满足继续入栈
if (map.containsKey(top) && c == map.get(']')) {
stack.pop();
} else {
stack.push(c);
}
}
}
System.out.println(stack.isEmpty());
}
}
3.栈实现综合表达式(中缀表达式)
public class Calculator {
public static void main(String[] args) {
//根据前面老师思路,完成表达式的运算
String expression = "7*2*2-5+1-5+3-4"; // 15//如何处理多位数的问题?
//创建两个栈,数栈,一个符号栈
ArrayStack2 numStack = new ArrayStack2(10);
ArrayStack2 operStack = new ArrayStack2(10);
//定义需要的相关变量
int index = 0;//用于扫描
int num1 = 0;
int num2 = 0;
int oper = 0;
int res = 0;
char ch = ' '; //将每次扫描得到char保存到ch
String keepNum = ""; //用于拼接 多位数
//开始while循环的扫描expression
while(true) {
//依次得到expression 的每一个字符
ch = expression.substring(index, index+1).charAt(0);
//判断ch是什么,然后做相应的处理
if(operStack.isOper(ch)) {//如果是运算符
//判断当前的符号栈是否为空
if(!operStack.isEmpty()) {
//如果符号栈有操作符,就进行比较,如果当前的操作符的优先级小于或者等于栈中的操作符,就需要从数栈中pop出两个数,
//在从符号栈中pop出一个符号,进行运算,将得到结果,入数栈,然后将当前的操作符入符号栈
if(operStack.priority(ch) <= operStack.priority(operStack.peek())) {
num1 = numStack.pop();
num2 = numStack.pop();
oper = operStack.pop();
res = numStack.cal(num1, num2, oper);
//把运算的结果如数栈
numStack.push(res);
//然后将当前的操作符入符号栈
operStack.push(ch);
} else {
//如果当前的操作符的优先级大于栈中的操作符, 就直接入符号栈.
operStack.push(ch);
}
}else {
//如果为空直接入符号栈..
operStack.push(ch); // 1 + 3
}
} else { //如果是数,则直接入数栈
//numStack.push(ch - 48); //? "1+3" '1' => 1
//分析思路
//1. 当处理多位数时,不能发现是一个数就立即入栈,因为他可能是多位数
//2. 在处理数,需要向expression的表达式的index 后再看一位,如果是数就进行扫描,如果是符号才入栈
//3. 因此我们需要定义一个变量 字符串,用于拼接
//处理多位数
keepNum += ch;
//如果ch已经是expression的最后一位,就直接入栈
if (index == expression.length() - 1) {
numStack.push(Integer.parseInt(keepNum));
}else{
//判断下一个字符是不是数字,如果是数字,就继续扫描,如果是运算符,则入栈
//注意是看后一位,不是index++
if (operStack.isOper(expression.substring(index+1,index+2).charAt(0))) {
//如果后一位是运算符,则入栈 keepNum = "1" 或者 "123"
numStack.push(Integer.parseInt(keepNum));
//重要的!!!!!!, keepNum清空
keepNum = "";
}
}
}
//让index + 1, 并判断是否扫描到expression最后.
index++;
if (index >= expression.length()) {
break;
}
}
//当表达式扫描完毕,就顺序的从 数栈和符号栈中pop出相应的数和符号,并运行.
while(true) {
//如果符号栈为空,则计算到最后的结果, 数栈中只有一个数字【结果】
if(operStack.isEmpty()) {
break;
}
num1 = numStack.pop();
num2 = numStack.pop();
oper = operStack.pop();
res = numStack.cal(num1, num2, oper);
numStack.push(res);//入栈
}
//将数栈的最后数,pop出,就是结果
int res2 = numStack.pop();
System.out.printf("表达式 %s = %d", expression, res2);
}
}
//先创建一个栈,直接使用前面创建好
//定义一个 ArrayStack2 表示栈, 需要扩展功能
class ArrayStack2 {
private int maxSize; // 栈的大小
private int[] stack; // 数组,数组模拟栈,数据就放在该数组
private int top = -1;// top表示栈顶,初始化为-1
//构造器
public ArrayStack2(int maxSize) {
this.maxSize = maxSize;
stack = new int[this.maxSize];
}
//增加一个方法,可以返回当前栈顶的值, 但是不是真正的pop
public int peek() {
return stack[top];
}
//栈满
public boolean isFull() {
return top == maxSize - 1;
}
//栈空
public boolean isEmpty() {
return top == -1;
}
//入栈-push
public void push(int value) {
//先判断栈是否满
if(isFull()) {
System.out.println("栈满");
return;
}
top++;
stack[top] = value;
}
//出栈-pop, 将栈顶的数据返回
public int pop() {
//先判断栈是否空
if(isEmpty()) {
//抛出异常
throw new RuntimeException("栈空,没有数据~");
}
int value = stack[top];
top--;
return value;
}
//显示栈的情况[遍历栈], 遍历时,需要从栈顶开始显示数据
public void list() {
if(isEmpty()) {
System.out.println("栈空,没有数据~~");
return;
}
//需要从栈顶开始显示数据
for(int i = top; i >= 0 ; i--) {
System.out.printf("stack[%d]=%d\n", i, stack[i]);
}
}
//返回运算符的优先级,优先级是程序员来确定, 优先级使用数字表示
//数字越大,则优先级就越高.
public int priority(int oper) {
if(oper == '*' || oper == '/'){
return 1;
} else if (oper == '+' || oper == '-') {
return 0;
} else {
return -1; // 假定目前的表达式只有 +, - , * , /
}
}
//判断是不是一个运算符
public boolean isOper(char val) {
return val == '+' || val == '-' || val == '*' || val == '/';
}
//计算方法
public int cal(int num1, int num2, int oper) {
int res = 0; // res 用于存放计算的结果
switch (oper) {
case '+':
res = num1 + num2;
break;
case '-':
res = num2 - num1;// 注意顺序
break;
case '*':
res = num1 * num2;
break;
case '/':
res = num2 / num1;
break;
default:
break;
}
return res;
}
}
4.栈实现逆波兰计算器(后缀表达式)
import java.util.ArrayList;
import java.util.List;
import java.util.Stack;
public class PolandNotation {
public static void main(String[] args) {
//完成将一个中缀表达式转成后缀表达式的功能
//说明
//1. 1+((2+3)×4)-5 => 转成 1 2 3 + 4 × + 5 –
//2. 因为直接对str 进行操作,不方便,因此 先将 "1+((2+3)×4)-5" =》 中缀的表达式对应的List
// 即 "1+((2+3)×4)-5" => ArrayList [1,+,(,(,2,+,3,),*,4,),-,5]
//3. 将得到的中缀表达式对应的List => 后缀表达式对应的List
// 即 ArrayList [1,+,(,(,2,+,3,),*,4,),-,5] =》 ArrayList [1,2,3,+,4,*,+,5,–]
String expression = "1+((2+3)*4)-5";//注意表达式
List<String> infixExpressionList = toInfixExpressionList(expression);
System.out.println("中缀表达式对应的List=" + infixExpressionList); // ArrayList [1,+,(,(,2,+,3,),*,4,),-,5]
List<String> suffixExpreesionList = parseSuffixExpreesionList(infixExpressionList);
System.out.println("后缀表达式对应的List" + suffixExpreesionList); //ArrayList [1,2,3,+,4,*,+,5,–]
System.out.printf("expression=%d", calculate(suffixExpreesionList)); // ?
/*
//先定义给逆波兰表达式
//(30+4)×5-6 => 30 4 + 5 × 6 - => 164
// 4 * 5 - 8 + 60 + 8 / 2 => 4 5 * 8 - 60 + 8 2 / +
//测试
//说明为了方便,逆波兰表达式 的数字和符号使用空格隔开
//String suffixExpression = "30 4 + 5 * 6 -";
String suffixExpression = "4 5 * 8 - 60 + 8 2 / +"; // 76
//思路
//1. 先将 "3 4 + 5 × 6 - " => 放到ArrayList中
//2. 将 ArrayList 传递给一个方法,遍历 ArrayList 配合栈 完成计算
List<String> list = getListString(suffixExpression);
System.out.println("rpnList=" + list);
int res = calculate(list);
System.out.println("计算的结果是=" + res);
*/
}
//即 ArrayList [1,+,(,(,2,+,3,),*,4,),-,5] =》 ArrayList [1,2,3,+,4,*,+,5,–]
//方法:将得到的中缀表达式对应的List => 后缀表达式对应的List
public static List<String> parseSuffixExpreesionList(List<String> ls) {
//定义两个栈
Stack<String> s1 = new Stack<String>(); // 符号栈
//说明:因为s2 这个栈,在整个转换过程中,没有pop操作,而且后面我们还需要逆序输出
//因此比较麻烦,这里我们就不用 Stack<String> 直接使用 List<String> s2
//Stack<String> s2 = new Stack<String>(); // 储存中间结果的栈s2
List<String> s2 = new ArrayList<String>(); // 储存中间结果的List s2
//遍历ls
for(String item: ls) {
//如果是一个数,加入s2
if(item.matches("\\d+")) {
s2.add(item);
} else if (item.equals("(")) {
s1.push(item);
} else if (item.equals(")")) {
//如果是右括号“)”,则依次弹出s1栈顶的运算符,并压入s2,直到遇到左括号为止,此时将这一对括号丢弃
while(!s1.peek().equals("(")) {
s2.add(s1.pop());
}
s1.pop();//!!! 将 ( 弹出 s1栈, 消除小括号
} else {
//当item的优先级小于等于s1栈顶运算符, 将s1栈顶的运算符弹出并加入到s2中,再次转到(4.1)与s1中新的栈顶运算符相比较
//问题:我们缺少一个比较优先级高低的方法
while(s1.size() != 0 && Operation.getValue(s1.peek()) >= Operation.getValue(item) ) {
s2.add(s1.pop());
}
//还需要将item压入栈
s1.push(item);
}
}
//将s1中剩余的运算符依次弹出并加入s2
while(s1.size() != 0) {
s2.add(s1.pop());
}
return s2; //注意因为是存放到List, 因此按顺序输出就是对应的后缀表达式对应的List
}
//方法:将 中缀表达式转成对应的List
// s="1+((2+3)×4)-5";
public static List<String> toInfixExpressionList(String s) {
//定义一个List,存放中缀表达式 对应的内容
List<String> ls = new ArrayList<String>();
int i = 0; //这时是一个指针,用于遍历 中缀表达式字符串
String str; // 对多位数的拼接
char c; // 每遍历到一个字符,就放入到c
do {
//如果c是一个非数字,我需要加入到ls
if((c=s.charAt(i)) < 48 || (c=s.charAt(i)) > 57) {
ls.add("" + c);
i++; //i需要后移
} else { //如果是一个数,需要考虑多位数
str = ""; //先将str 置成"" '0'[48]->'9'[57]
while(i < s.length() && (c=s.charAt(i)) >= 48 && (c=s.charAt(i)) <= 57) {
str += c;//拼接
i++;
}
ls.add(str);
}
}while(i < s.length());
return ls;//返回
}
//将一个逆波兰表达式, 依次将数据和运算符 放入到 ArrayList中
public static List<String> getListString(String suffixExpression) {
//将 suffixExpression 分割
String[] split = suffixExpression.split(" ");
List<String> list = new ArrayList<String>();
for(String ele: split) {
list.add(ele);
}
return list;
}
//完成对逆波兰表达式的运算
/*
* 1)从左至右扫描,将3和4压入堆栈;
2)遇到+运算符,因此弹出4和3(4为栈顶元素,3为次顶元素),计算出3+4的值,得7,再将7入栈;
3)将5入栈;
4)接下来是×运算符,因此弹出5和7,计算出7×5=35,将35入栈;
5)将6入栈;
6)最后是-运算符,计算出35-6的值,即29,由此得出最终结果
*/
public static int calculate(List<String> ls) {
// 创建给栈, 只需要一个栈即可
Stack<String> stack = new Stack<String>();
// 遍历 ls
for (String item : ls) {
// 这里使用正则表达式来取出数
if (item.matches("\\d+")) { // 匹配的是多位数
// 入栈
stack.push(item);
} else {
// pop出两个数,并运算, 再入栈
int num2 = Integer.parseInt(stack.pop());
int num1 = Integer.parseInt(stack.pop());
int res = 0;
if (item.equals("+")) {
res = num1 + num2;
} else if (item.equals("-")) {
res = num1 - num2;
} else if (item.equals("*")) {
res = num1 * num2;
} else if (item.equals("/")) {
res = num1 / num2;
} else {
throw new RuntimeException("运算符有误");
}
//把res 入栈
stack.push("" + res);
}
}
//最后留在stack中的数据是运算结果
return Integer.parseInt(stack.pop());
}
}
//编写一个类 Operation 可以返回一个运算符 对应的优先级
class Operation {
private static int ADD = 1;
private static int SUB = 1;
private static int MUL = 2;
private static int DIV = 2;
//写一个方法,返回对应的优先级数字
public static int getValue(String operation) {
int result = 0;
switch (operation) {
case "+":
result = ADD;
break;
case "-":
result = SUB;
break;
case "*":
result = MUL;
break;
case "/":
result = DIV;
break;
default:
System.out.println("不存在该运算符" + operation);
break;
}
return result;
}
}
文章转载来源:文章转载来源