数据结构之二叉排序树

数据结构之二叉排序树

1、二叉排序树定义

二叉排序树也叫二叉搜索树、二叉查找树。二叉排序树树是一颗它的左子树上的节点都小于根节点,右子树上的节点都大于根节点的二叉树,且其左右子树也是二叉排序树。

实例

img

二叉树实例

2、二叉排序树的创建

当要向二叉排序树中插入元素的时候,从根节点开始查找,先将根节点作为当前节点,如果要插入的值比当前节点的值小,则判断当前节点的左孩子是不是空,如果是空则将要插入的值作为当前节点的左孩子,不是空则将当前节点的左孩子作为当前节点继续查找;当要插入的值比当前节点的值大时,判断当前节点的右孩子是不是空,如果是空则将要插入的值作为当前节点的右孩子,不是空则把当前节点的右孩子作为当前节点继续查找
节点定义

public static class Node {
    public int value;
    public Node left;
    public Node right;
}

递归实现

private static Node create(Node root, int value) {
    if (root == null) {
        Node node = new Node();
        node.value = value;
        return node;
    }
    if (value < root.value) {
        root.left = create(root.left, value);
    } else if (value > root.value) {
        root.right = create(root.right, value);
    }
    return root;
}

非递归实现

private static Node create2(Node root, int value) {
    Node node = new Node();
    node.value = value;

    if (root == null) {
        return node;
    }

    Node temp = root;
    while (true) {
        if (value < temp.value) {
            if (temp.left == null) {
                temp.left = node;
                return root;
            } else {
                temp = temp.left;
            }
        } else if (value > temp.value) {
            if (temp.right == null) {
                temp.right = node;
                return root;
            } else {
                temp = temp.right;
            }
        } else {
            return root;
        }
    }
}

3、二叉排序树的遍历

使用中序遍历,遍历出来的结构刚好是一个升序排列的数列
递归写法

private static void traverseMide(StringBuilder builder, Node root) {
    if (root == null) {
        return;
    }
    traverseMide(builder, root.left);//遍历左孩子
    builder.append(root.value + ",");//打印更节点
    traverseMide(builder, root.right);//遍历有孩子
}

非递归写法

 private static void traverseMide2(StringBuilder builder, Node root) {
        Stack<Node> stack = new Stack<>();//缓存要回溯的节点
        Node temp = root;
        while (temp != null || !stack.isEmpty()) {
            while (temp != null) {
                stack.push(temp);
                temp = temp.left;
            }
            if (!stack.isEmpty()) {
                temp = stack.pop();
                builder.append(temp.value + ",");//打印节点
                if (temp.right != null) {
                    temp = temp.right;
                } else {
                    temp = null;
                }
            }
        }
    }

4、二叉排序树的搜索

搜索二叉排序树的时候,从根节点开始搜索,将根节点作为当前节点,如果当前节点的值和搜索的值相等,则搜索结束,返回成功;如果当前节点的值小于搜索值,则判断当前节点的左孩子是不是空,如果是空,则搜索的值不在树中,搜索结束返回失败,如果不为空,则将当前节点的左孩子作为当前节点,继续搜索;如果当前节点的值大于搜索值,则判断当前节点的右子树是不是空,如果是空,则搜索的值不在树中,搜索结束,返回失败,如果不为空,则将当前节点的右孩子作为当前节点,继续搜索。

private static boolean search(Node root, int value) {
    if (root == null) {
        return false;
    }
    if (root.value == value) {
        return true;
    } else if (value < root.value) {
        return search(root.left, value);
    } else {
        return search(root.right, value);
    }
}

5、二叉树的删除

二叉排序树的删除分为如下三种基本的情况

  1. 要删除的节点就是叶子节点
  2. 要删除的节点只有一个孩子
  3. 要删除的节点有两个孩子

5.1 要删除的节点就是叶子节点

直接删除节点即可

img

删除节点3000

img

节点删除之后

5.2 要删除的节点只有一个孩子

将要删除的节点的孩子节点替换当前节点即可

img

删除节点2500

img

节点删除之后

5.3 要删除的节点有两个孩子

在要删除的节点的右子树中找一个最小的值来替换掉要删除的节点,同时将这个最小的节点删除掉(也可以从左子树中找一个最大的节点)
具体情况

  1. 右子树没有孩子

    img

    删除节点2000,右子树没有孩子,右子树直接替代节点2000

    img

    节点2000被替代之后

  2. 右子树只有右孩子

    img

    删除节点2000,右孩子只有右节点,右孩子直接替代节点2000

    img

    节点2000被替代之后

  3. 右子树有左孩子

    img

    删减节点2000,右子树有左孩子,从右子树中找到最左的节点替换节点2000

    img

    节点2000被替代之后

算法实现:

  1. 先找出右子树中的值最小的节点;
  2. 用最小节点的值替代掉要删除的节点的地址;
  3. 然后子从右子树中删除这个最小节点
    删除的源码
private static Node delete(Node root, int value) {
    if (root == null) {
        return null;
    }
    if (value < root.value) {
        root.left = delete(root.left, value);
    } else if (value > root.value) {
        root.right = delete(root.right, value);
    } else {
        if (root.left == null && root.right == null) {//叶子节点
            root = null;
        } else if (root.left == null || root.right == null) {//一个节点
            if (root.left == null) {
                root = root.right;
            } else if (root.right == null) {
                root = root.left;
            }
        } else {//有两个节点:
            //找到右边最小的节点,替换要删除的节点,然后删除最小的节点
                Node temp = root.right;
                while (temp.left != null) {
                    temp = temp.left;
                }
                root.value = temp.value;
                root.right = delete(root.right, temp.value);
        }
    }
    return root;
}

6、时间复杂度

二叉排序树的查找时间与二叉树的高度有关,高度越高需要的查找时间就越多。
二叉排序树的高度有两种极端的情况,一种是完全二叉树,一种是每层只有一个节点的情况,变成了一个链表。

img

完全二叉树

img

链表

当是完全二叉树的时候:这种情况下的时间复杂为O(log2N)
当每一层只有一个节点时,也就是链表的时候:这种情况下的时间复杂度为O(n)
所以二叉排序树的搜索时间复杂度在:O(log2N)O(n)之间。它的插入,删除复杂度也在O(log2N)O(n)之间

作者:huyongming
链接:https://www.jianshu.com/p/1bb52af978a3
来源:简书
3lskwt-1653637135679)]

完全二叉树

[外链图片转存中…(img-U7Ixe77w-1653637135679)]

链表

当是完全二叉树的时候:这种情况下的时间复杂为O(log2N)
当每一层只有一个节点时,也就是链表的时候:这种情况下的时间复杂度为O(n)
所以二叉排序树的搜索时间复杂度在:O(log2N)O(n)之间。它的插入,删除复杂度也在O(log2N)O(n)之间

作者:huyongming
链接:https://www.jianshu.com/p/1bb52af978a3
来源:简书
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值