新能源为主体的电力系统中的挑战性问题和关键技术及应对方案综述

新能源为主体的电力系统中的挑战性问题和关键技术及应对方案综述

摘要

随着全球能源结构的转型,新能源在电力系统中扮演着越来越重要的角色。尽管新能源具有清洁、可再生等优点,但其广泛应用也带来了诸多挑战性问题。本文详细分析了新能源为主体的电力系统中面临的主要挑战性问题,并探讨了关键技术的应用,然后结合计算机视觉和显著性目标检测技术提出了可能的应对方案。
关键词:新能源电力系统,显著性目标检测,应对方案

0 引言

随着全球能源需求的不断增长和环境保护意识的增强,传统化石燃料发电逐渐被清洁、可再生的新能源所取代。以风能、太阳能为代表的新能源在电力系统中的占比日益提高,成为未来能源发展的重要方向。然而,新能源电力系统在发电、输电、配电及用电各环节面临诸多挑战。本文将综述以新能源为主体的电力系统中的主要挑战性问题和关键技术,并列举了相应的案例,然后结合本人从事的计算机视觉和显著性目标检测领域的相关技术,提出了一些应对这些挑战的方案,如图1所示为本文的内容阐述逻辑图。
在这里插入图片描述
图1 全文总体架构

1 挑战性问题

随着全球能源结构的转型,新能源在电力系统中占据的比重日益增加。尽管新能源具有清洁、可再生等优点,但其广泛应用也带来了诸多挑战。以下是新能源为主体的电力系统中面临的主要挑战性问题及其具体实例分析,如图2所示,本文从不稳定性和间歇性,电网适应性,能量存储、分配与管理,预测与调度,电力系统安全五个方面进行展开阐述。
在这里插入图片描述

图2 挑战性问题

1.1 不稳定性和间歇性

问题描述
新能源发电的随机性:新能源,如风能和太阳能,受天气条件影响较大,具有显著的波动性和间歇性,容易受到自然环境的影响,导致发电出力具有随机性和间歇性,无法保证持续稳定的电力供应。暴风雪、台风等极端天气可能导致新能源发电设备受损,如风力发电机组的叶片、塔架等部分可能被损坏,进而影响整个电力系统的稳定运行,如图3所示,阴天或夜晚太阳能发电无法进行,风速过大或过小都会影响风力发电机的效率,风速的突然变化可能导致风力发电机组的出力大幅波动。
电动汽车负荷的随机性:电动汽车的充电行为具有不确定性,其充电时间和地点难以预测,增加了电网负荷的波动性。
案例:在德国,尽管风能和太阳能装机容量巨大,但由于天气条件的波动,电网时常需要依赖传统化石燃料发电厂来平衡电力供需。
在这里插入图片描述

图3 损坏风力发电设备

1.2 电网适应性

问题描述:传统电网设计以集中式发电为主,而新能源的分布式特性要求电网具有更高的灵活性和适应性。随着分布式光伏发电、小型风电等新能源设备的广泛应用,电网中新能源发电设备的数量将达到千万台级,电网形态发生显著变化,典型光伏发电系统的构成如图4所示。传统电网在面对高比例新能源接入时,难以应对其波动性和分布式特性。例如,大量家庭屋顶光伏系统并入电网,给电网稳定性带来挑战。
案例:加州电网在夏季高温时期,由于空调使用量增加,电力需求剧增,而分布式光伏系统的高峰发电时段并不完全匹配用电高峰,导致电网面临严重负荷压力。
在这里插入图片描述

图4 典型光伏发电系统的构成

1.3 能量存储、分配与管理

(1)能量存储技术不完善
电力存储技术尚未完全成熟,难以在供需之间实现有效调节。有效的能量存储技术仍然有限,难以在需求与供给之间实现平衡。例如,锂电池储能成本高、寿命有限,难以大规模部署。
案例:特斯拉在澳大利亚部署的世界最大锂电池储能系统,虽然提高了当地电网的稳定性,但其高昂的成本和有限的存储容量依然是瓶颈。
(2)能源资源与负荷中心逆向分布
资源与负荷的不匹配,例如,中国的西部和北部地区拥有丰富的太阳能和风能资源,但电力负荷主要集中在东部沿海地区。这要求通过长距离输电来解决能源与负荷的不平衡问题。
(3)灵活电源的最大调节能力与新能源波动不匹配
新能源波动性与调节能力的矛盾,新能源发电的波动性较大,而传统的灵活电源(如火电、水电等)在调节能力上可能无法完全匹配新能源的波动,导致新能源消纳受限。
(4)电压、频率稳定问题凸显
新能源接入对电网稳定性的影响,新能源发电设备的接入可能改变电网的潮流分布和电压分布,对电网的稳定运行产生影响。例如,大规模风电接入可能导致电网电压波动增大。

1.4 预测与调度

问题描述:新能源发电量预测准确性不足,导致电网调度困难。例如,天气预报误差会直接影响太阳能和风能的发电预测。新能源的发电预测和调度复杂度高,误差大。
案例:在中国,华北电网在应对大规模风电接入时,由于风速预测误差,常常需要紧急调度火电机组,以平衡实时电力需求。

1.5 电力系统安全

问题描述:分布式新能源接入增加了电力系统的复杂性和安全风险,例如,电网频率和电压的波动可能导致设备损坏或停电事故。高比例的分布式新能源接入增加了电力系统的安全风险。
案例:英国电网在2019年8月遭遇的一次大规模停电事件,就是由于两座大型电站故障,再加上风电输出的波动,导致电网频率急剧下降。
新能源作为未来电力系统的重要组成部分,尽管具有清洁环保的优势,但其固有的间歇性、不稳定性等特点对电网的适应性、能量存储与管理、预测与调度以及系统安全提出了新的挑战。解决这些问题需要依靠先进的技术手段和管理策略,包括智能电网、能量存储、高效电力电子、分布式能源管理以及精准的预测模型等。只有通过持续的技术创新和完善的管理机制,才能充分发挥新能源的潜力,实现电力系统的绿色转型和可持续发展。

2 关键技术

在以新能源为主体的电力系统中,为了应对不稳定性、间歇性等挑战,必须依赖一系列关键技术的支持。这些技术不仅提升了电力系统的灵活性和可靠性,还促进了新能源的高效利用和管理。本文将从发电、储电、输电和用电四个方面详细介绍智能电网技术、先进能量存储技术、高效电力电子技术、分布式能源管理系统(DERMS)以及精准的新能源预测模型等关键技术及其应用实例。如图5所示为关键技术的内容逻辑图。
在这里插入图片描述

图5 关键技术逻辑图

2.1 发电

(1)电网友好型先进发电技术
高效太阳能发电技术:如聚光太阳能发电(CSP)和高效太阳能电池技术,提高太阳能发电的效率和稳定性。
海上风电技术:利用海洋风能资源丰富、风速稳定的特点,发展海上风电技术,提高风电的发电效率和可靠性。
(2)多元互补与灵活发电技术
水风光互补发电系统:结合水电、风电和太阳能发电的优势,构建互补发电系统,提高电力系统的灵活性和稳定性。
生物质能发电技术:利用生物质资源(如农作物秸秆、林业废弃物等)进行发电,提供可再生的、清洁的能源。
(3)精准的新能源预测模型
利用机器学习和深度学习技术,开发更精确的新能源发电预测模型,提高新能源发电量的预测准确性。例如,通过历史气象数据和发电数据训练模型,提高预测精度。如图6所示为一种基于深度学习的短期能源预测模型算法。
案例:谷歌公司使用深度学习模型预测其数据中心的太阳能发电量,将预测误差降低到10%以内,显著优化了能源管理。
在这里插入图片描述

图6 一种基于深度学习的短期能源预测模型算法

2.2 储电

(1)可平移负荷资源利用与储能技术
电动汽车储能技术:利用电动汽车的储能特性,将其作为电网的储能设备使用,实现电力供需的平衡。
电池储能系统(BESS):利用电池储能系统来平抑新能源发电的波动性和不确定性,提高电力系统的稳定性。
(2)先进能量存储技术
发展高效的电池储能、飞轮储能等技术,以应对新能源的波动性,包括电池储能、抽水蓄能、压缩空气储能等技术,用于平衡供需。例如,钠硫电池储能系统具有较高的能量密度和长寿命,适用于大规模储能。
案例:日本在福岛核事故后,大力发展钠硫电池储能系统,用于平衡太阳能和风能发电的波动性。
(3)加快开发新型储能定价机制
供给侧需要“新能源+能源储存”的支持政策,这可以进一步扩大新能源的消纳空间。鼓励储能作为独立主体,参与中长期电力交易、电力服务市场和其他竞争性交易,以获得更大的利润。在电网层面建立独立储能电价机制,并逐步推进其参与不同能源市场的成本补偿。电网替代储能设施的成本和收益应尽快关联输配电价格,关键应颁布相关实施政策。用户侧,改进峰谷时分的能源定价机制,改善峰谷时段以及峰谷之间的价格差异,并创造更多的机会和拓展更大的空间来发展用户的能源储存。

2.3 输电

(1)新型电网结构和特高压输电技术
直流电网技术:发展直流电网技术,实现电网的灵活调度和高效输电。
特高压输电技术:利用特高压输电技术,实现远距离、大容量、低损耗的电能传输,解决能源资源与负荷中心逆向分布的问题。
(2)电网智能调度控制与安全防御
人工智能调度控制技术:利用人工智能技术进行电网调度控制,实现电网的自动化、智能化运行,如图7所示为基于人工智能的电网调度系统架构图。
微电网技术:发展微电网技术,实现局部电网的自治和独立运行,提高电网的安全性和可靠性。
在这里插入图片描述

图7 基于人工智能的电网调度系统架构图
(3)分布式能源管理系统(DERMS)
通过软件平台优化分布式能源的运行和调度,实现资源的高效利用。例如,DERMS可以在电价高峰期优先使用储能系统中的电力,降低电费。优化分布式能源的运行和调度,提升整体效率。
案例:美国夏威夷电力公司部署的DERMS系统,有效整合了当地分布式光伏、储能和电动汽车充电设施,提升了电网稳定性。
(4)高效电力电子技术
电力电子设备如逆变器、变频器、柔性直流输电技术,提高了电能转换和传输的效率,提升了新能源发电的效率和稳定性。例如,太阳能逆变器将直流电转换为交流电,供家庭和电网使用。
案例:丹麦国家电网使用柔性直流输电技术,将北海风电场的电力高效输送至内陆地区,显著降低了输电损耗。

2.4 用电

(1)智能电网技术
通过传感器、物联网、云计算和人工智能技术,实现电网的实时监控、分析和控制,完善电力系统的智能化管理。例如,智能电表可以实时记录用电数据,帮助电力公司优化电网运行。
案例:西门子和IBM合作开发的智能电网解决方案,通过大数据分析和AI技术,提高了德国某市电网的运行效率和可靠性。
(2)新型用电方式与供需协同机制
智能家居技术:发展智能家居技术,实现家庭用电的智能化管理和控制,提高用电效率。
需求侧响应技术:建立需求侧响应机制,鼓励用户在高峰时段减少用电或转移用电时间,减轻电网压力。在新能源电力系统,用电协同调度功能是协助其良好运行的基础条件,构建先进的能量管理体系是为了观察不同测量点的工作状况,全方位收集和应用相关数据信息,为计算协同调度系统运行提供数据依据,实时了解系统电源、负荷参数和运行速度等,进而为相关人员提供工作便利,如图8所示为需求侧响应的电力系统计算方法。
在这里插入图片描述

图8 需求侧响应的电力系统计算方法
以上关键技术在以新能源为主体的电力系统中发挥着至关重要的作用。智能电网技术提升了电网的监控和管理能力,先进能量存储技术提供了有效的储能解决方案,高效电力电子技术确保了电能的高效转换和传输,分布式能源管理系统优化了分布式能源的运行和调度,而精准的新能源预测模型则提高了发电量预测的准确性。通过这些技术的综合应用,电力系统能够更好地应对新能源带来的挑战,实现稳定、高效和可持续的电力供应。

3 结合计算机视觉和显著性目标检测技术提出的应对方案

面对新能源电力系统的多重挑战,传统的方法已不足以应对,需要结合先进的技术手段来提升系统的稳定性和效率。计算机视觉和显著性目标检测技术在设备监控、发电预测、电网状态监测、能量管理和安全保障等方面展现出巨大潜力。以下将详细探讨这些技术在应对新能源电力系统挑战中的具体应用方案。在新能源为主体的电力系统中,结合计算机视觉和显著性目标检测技术,引入人工智能技术,可以提出一些创新的应对方案来应对系统面临的挑战性问题。以下是几种可能的应对方案,如图9所示为相关应对方案的内容逻辑图,主要包括设备和设施的监控与维护,新能源发电预测,电网状态监测与故障检测,能量管理与优化和安全防御与风险评估五个方面。
在这里插入图片描述

图9 相关应对方案的内容逻辑图

3.1 设备和设施的监控与维护

(1)实时监测与故障识别
利用计算机视觉技术,通过安装摄像头或红外热像仪等设备,对电力设备进行实时监测,监控风力发电机、光伏面板等设备的运行状态,及时发现故障和损坏。这些设备可以捕获电力设备的图像或红外图像,然后通过显著性目标检测技术,自动识别和提取图像中的关键区域或目标,用于检测设备表面缺陷(如裂纹、污渍),实现早期预警和维护,减少非计划停机时间。
案例:美国NextEra能源公司使用无人机和计算机视觉技术巡检风力发电机,自动检测叶片上的裂纹和积冰,提高了维护效率。
(2)设备缺陷检测与诊断
计算机视觉技术可以通过图像处理和分析,对电力设备的表面进行精确检测和识别,可以实时检测设备的工作状态、温度等信息,并通过图像识别技术来自动辨别设备的异常和故障。一旦发现异常情况,系统可以立即进行报警,并触发相应的应急处理机制。利用显著性目标检测技术,系统可以自动提取设备表面图像中的关键区域或特征,如裂纹、锈迹等。结合机器学习或深度学习算法,系统可以对这些特征进行自动分类和识别,从而实现对设备缺陷的精确检测和诊断。这有助于及时发现并处理设备缺陷,提高设备的可靠性和稳定性。

3.2 新能源发电预测

利用计算机视觉分析卫星图像,可以预测云层运动和太阳辐射变化,从而提高太阳能和风能发电量预测的准确性。通过计算机视觉技术分析风场图像,结合气象数据,可以提高风速和风向的预测精度。
案例:欧洲航天局与研究机构合作,通过计算机视觉技术分析卫星云图,精确预测太阳能发电量,应用于意大利国家电网调度。

3.3 电网状态监测与故障检测

无人机配备计算机视觉和显著性目标检测技术,可以巡检输电线路,检测潜在故障点,可以辅助巡检人员快速、准确地识别线路上的缺陷、腐蚀、松动等问题。利用计算机视觉技术实时监控变电站设备的运行状态,检测异常情况并及时报警。通过显著性目标检测技术,系统可以自动定位并突出显示图像中的关键区域,帮助巡检人员更加关注潜在的问题区域。此外,计算机视觉技术还可以对巡检数据进行自动化处理和分析,提高巡检效率和质量。
案例:法国电力公司EDF使用无人机巡检电力输电塔,结合计算机视觉技术检测塔体结构损坏,降低了人工巡检成本。

3.4 能量管理与优化

(1)实时数据分析和需求侧响应
实时数据分析:通过显著性目标检测技术提取重要的能量使用和生产数据,优化能量管理系统技术,实现实时数据分析,优化能量管理系统。
需求侧响应:通过分析用电设备的视频数据,识别和预测负荷需求变化,优化需求响应策略。
案例:中国国家电网公司采用显著性目标检测技术,实时监控和优化分布式光伏系统的发电和使用情况,提高整体能效。
(2)智能调度与控制
在电网智能调度控制方面,计算机视觉技术可以辅助调度人员实时掌握电网的运行状态。通过显著性目标检测技术,系统可以自动提取电网图像中的关键信息,如电压、频率、潮流等。结合电网运行数据和人工智能技术,系统可以实现对电网的智能调度和控制。这有助于优化电网运行方式,提高电网的效率和安全性。

3.5 安全防御与风险评估

利用计算机视觉监控电力设施周围的活动,实时监测电力设备的运行状态和周围环境的变化,显著性目标检测可以识别电力设施周围的可疑人员或物体,检测和预警异常行为,防止人为破坏,及时发现潜在的安全隐患和风险,提升电力系统的安全防护能力。利用显著性目标检测技术,系统可以自动提取图像中的关键信息,并结合其他传感器数据和信息源,进行综合分析和评估。这有助于及时发现并处理潜在的安全问题,提高电力系统的安全性和可靠性。
案例:英国国家电网在变电站部署监控摄像头和计算机视觉系统,实时检测并报警非法入侵行为,增强了电力设施的安全性。
结合计算机视觉和显著性目标检测技术,可以显著提升新能源电力系统的各项功能,从而更有效地应对其固有的挑战。这些技术不仅提高了设备和设施的监控维护能力,还优化了发电预测和电网管理,并增强了系统的整体安全性。随着技术的不断进步,这些应对方案将变得更加成熟和广泛应用,为新能源电力系统的可持续发展提供坚实的技术支撑。

4 结论

本文综述了新能源为主体的电力系统所面临的主要挑战和关键技术,并提出了基于计算机视觉和显著性目标检测等先进技术的应对方案。计算机视觉技术提供了设备监控、预测分析和故障检测的手段,而显著性目标检测则能进一步提升这些技术的精度和效率,确保电力系统的稳定、高效和安全运行。这些技术手段不仅提升了电力系统的灵活性和稳定性,还可以有效应对以新能源为主体的电力系统中的诸多挑战,为新能源为主体的电力系统提供更加智能化、高效化的监测、巡检、诊断、调度和控制方案,有效提升新能源为主体的电力系统的运行效率、安全性和可靠性。未来,随着人工智能技术、计算机视觉等技术的不断进步和完善,这些解决方案将更加成熟和普及,为新能源电力系统的发展提供有力支持,新能源电力系统将能够更好地应对各种挑战,实现更加高效、可靠和可持续的发展,为全球能源转型提供有力支持。

参考文献

[1]兰栋.新能源发电对地区电网调度的问题分析[J].科技资讯,2018,16(10):39+43.DOI:10.16661/j.cnki.1672-3791.2018.10.039.
[2]苏文婧,苏适,杨洋,等.以新能源为主体的新型电力系统建设面临的问题[J].云南电力技术,2022,50(01):24-28.
[3]张凯.关于新能源电力系统中需求侧响应关键问题研究[J].科技经济市场,2023,(11):39-41.
[4]胡正强,熊艳霞.新能源电力系统的运营模式及关键技术[J].通信电源技术,2018,35(12):266-267+270.DOI:10.19399/j.cnki.tpt.2018.12.125.
[5]戴忠.新能源电力系统优化控制方法及关键技术[J].农村电气化,2017,(05):47-48.DOI:10.13882/j.cnki.ncdqh.2017.05.023.
[6]董洁,乔建强.“双碳”目标下先进煤炭清洁利用发电技术研究综述[J].中国电力,2022,55(08):202-212.
[7]杨强,颜宗辉,杜秀举,等.基于ANN架构的新能源发电预测模型的研究[J].电气应用,2024,43(02):76-82.
[8]周虎. 基于损失函数与神经网络的电力系统能源预测研究[D].南京邮电大学,2024.DOI:10.27251/d.cnki.gnjdc.2023.000870.
[9]曾鸣,杨雍琦,李源非,等.能源互联网背景下新能源电力系统运营模式及关键技术初探[J].中国电机工程学报,2016,36(03):681-691.DOI:10.13334/j.0258-8013.pcsee.2016.03.011.
[10]时智勇,王彩霞.高比例新能源电力系统储能应用关键问题与展望[J].新能源科技,2021,(06):27-29.
[11]赵文强,周军,王正伟,等.特高压输电系统用同步调相机故障诊断方法[J].科学技术与工程,2024,24(09):3683-3690.
[12]唐细致.电力电子技术在电力系统中的应用研究[J].光源与照明,2024,(03):192-194.
[13]梁良.AI识别技术应用在输配电网络故障诊断中的实践路径[J].电工技术,2023(S1):1-3.DOI:10.19768/j.cnki.dgjs.2023.25.001.
[14]乔帅君.基于多源信息融合的智能电网故障诊断方法研究[D].中国矿业大学,2022.DOI:10.27623/d.cnki.gzkyu.2022.001275.
[15]赵经纬.基于智能电网的电力管理系统的设计与优化[J].自动化应用,2023,64(S2):80-82.
[16]陈恺.智能电网建设下分布式发电继电保护技术探析[J].科技资讯,2024,22(04):103-106.DOI:10.16661/j.cnki.1672-3791.2311-5042-1526.
[17]何立国.电力工程技术在智能电网建设中的应用浅析[J].中国设备工程,2024,(06):45-47.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值