- 博客(11)
- 资源 (1)
- 收藏
- 关注
原创 自动控制原理思维导图CUMT
根据CUMT自动控制原理制作,本人原创,制作时间2021年11月10日。ch1绪论ch2控制系统的数学模型ch3线性系统的时域分析法ch4线性系统的根轨迹法ch5线性系统的频率响应法ch6线性系统的校正ch7非线性控制系统分析
2023-12-20 22:48:29 581 1
原创 参考图像分割Referring Image Segmentation(RIS)和开放词汇语义分割Open Vocabulary Semantic Segmentation
这种方法通过文本描述的任意类别对图像进行分割,从而更接近人类水平的感知。具体来说,开放词汇语义分割的方法包括使用视觉编码器和文本编码器对图像文本对进行训练,以及使用预先训练的视觉语言模型(如CLIP)对掩码区域进行分类。这种方法能够处理任意类别的语义区域,从而实现更灵活的语义分割。此外,为了解决预训练的CLIP模型在掩膜图像上表现不佳的问题,有研究者提出了一种新的方法,即在一组带有掩膜的图像区域和它们对应的文本描述上微调CLIP的方法。
2023-11-17 19:46:50 1631
原创 博客摘录「 知识蒸馏(Knowledge Distillation)」2023年10月25日
知识蒸馏训练的具体方法如下图所示,主要包括以下几个步骤:step1:训练好 Teacher 模型step2:利用高温T h i g h T_{high}T high 产生S o f t − t a r g e t Soft-targetSoft−targetstep3:利用 {S o f t − t a r g e t Soft-targetSoft−target,T h i g h T_{high}T high } 和 {H a r d − t a r g e t Hard-targetHard−ta
2023-11-11 09:54:19 107 1
原创 深度学习优缺点(博客摘录「 知识蒸馏」2023年10月25日)
1.1 深度学习的优点特征学习代替特征工程:深度学习通过从数据中自己学习出有效的特征表示,代替以往机器学习中繁琐的人工特征工程过程,举例来说,对于图片的猫狗识别问题,机器学习需要人工的设计、提取出猫的特征、狗的特征输入到机器学习模型中才能进行进一步的分类,这个过程非常依赖人的经验和领域知识,而深度学习模型会自己直接从猫狗图片中学习出猫和狗的有效特征表示。1.2 深度学习的缺点依赖数据量规模:深度学习要想发挥出理想的效果,需要大规模的数据,当数据量偏少时可能还不如传统的机器学习方法。
2023-11-03 21:17:56 423
原创 图像综合处理小设计实验—opencv背景分割,硬币检测
图像综合处理小设计实验,机器视觉图像的目标与背景的分割与提取,基于Sobel算子完成对图像的搜索,硬币检测及计数
2022-08-22 17:16:21 4520 2
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人