- 博客(39)
- 资源 (1)
- 收藏
- 关注
原创 企业中常见的CEO、COO、CFO、CTO、CHO、CSO分别是什么?
作为企业最高管理者,负责制定公司战略方向、整体运营及重大决策,代表董事会行使经营权。CEO需确保公司长期发展与短期目标的平衡,协调各部门资源,推动企业盈利增长。在大型企业中,CEO通常兼任董事会成员,直接向董事长汇报。:全面管理企业财务活动,包括资金规划、投融资、税务管理等,确保财务健康与合规性。:作为CEO的副手,专注于企业日常运营管理,确保战略落地与流程高效执行。:分析企业内外部环境,制定中长期战略规划,解决核心问题以保持竞争优势。:统筹人力资源管理,确保人才战略与企业目标一致。
2025-05-11 17:52:17
1876
原创 C++的vector中emplace_back() 与 push_back() 的区别
C++的vector中emplace_back() 与 push_back() 的区别
2025-04-29 20:21:18
491
原创 注意力机制:从 MHA、MQA、GQA、MLA 到 NSA、MoBA
大语言模型中的注意力机制:从 MHA、MQA、GQA、MLA 到 NSA、MoBA
2025-04-28 21:22:54
1349
原创 常见论文审稿意见回复对策(计算机视觉领域)
本文将针对计算机视觉领域常见的审稿意见,提供实用的回复策略及回复示例,帮助研究者提升论文质量,顺利通过审稿流程。
2025-03-22 10:29:48
931
原创 Neurocomputing介绍与真实投稿记录
是国际知名学术期刊,由Elsevier出版,专注于神经计算、人工智能及相关领域的研究。Neurocomputing 是人工智能和神经计算领域的国际顶级期刊,具有较高的学术影响力和认可度。其严格的审稿流程和高影响因子使其成为该领域学者发表研究成果的重要平台。
2025-03-21 10:40:29
7359
33
原创 深度学习训练模型损失Loss为NaN或者无穷大(INF)原因及解决办法
Pytorch训练模型损失Loss为NaN或者无穷大(INF)原因及解决办法
2025-01-02 16:28:43
3136
原创 新能源为主体的电力系统中的挑战性问题和关键技术及应对方案综述
随着全球能源结构的转型,新能源在电力系统中扮演着越来越重要的角色。尽管新能源具有清洁、可再生等优点,但其广泛应用也带来了诸多挑战性问题。本文详细分析了新能源为主体的电力系统中面临的主要挑战性问题,并探讨了关键技术的应用,然后结合计算机视觉和显著性目标检测技术提出了可能的应对方案。关键词:新能源电力系统,显著性目标检测,应对方案。
2024-12-26 15:55:53
1447
原创 博客摘录「 神经网络训练时损失(loss)不下降常见解决办法以及训练时损失出现nan可能原因以及解决」2024年10月15日
5、数据中出现脏数据,通过设置batch_size = 1,shuffle = False,一步一步地将sample定位到了所有可能的脏数据,删掉。batch size过小,会导致模型后期摇摆不定,迟迟难以收敛,而过大时,模型前期由于梯度的平均,导致收敛速度过慢。1、数据归一化(减均值,除方差,或者加入normalization,例如BN、L2 norm等)2.如果当前的网络是类似于RNN的循环神经网络的话,出现NaN可能是因为梯度爆炸的原因,一个…二、epoch在100内损失出现nan可能原因以及解决。
2024-12-18 20:30:28
230
原创 自动控制原理思维导图CUMT
根据CUMT自动控制原理制作,本人原创,制作时间2021年11月10日。ch1绪论ch2控制系统的数学模型ch3线性系统的时域分析法ch4线性系统的根轨迹法ch5线性系统的频率响应法ch6线性系统的校正ch7非线性控制系统分析
2023-12-20 22:48:29
917
3
原创 参考图像分割Referring Image Segmentation(RIS)和开放词汇语义分割Open Vocabulary Semantic Segmentation
这种方法通过文本描述的任意类别对图像进行分割,从而更接近人类水平的感知。具体来说,开放词汇语义分割的方法包括使用视觉编码器和文本编码器对图像文本对进行训练,以及使用预先训练的视觉语言模型(如CLIP)对掩码区域进行分类。这种方法能够处理任意类别的语义区域,从而实现更灵活的语义分割。此外,为了解决预训练的CLIP模型在掩膜图像上表现不佳的问题,有研究者提出了一种新的方法,即在一组带有掩膜的图像区域和它们对应的文本描述上微调CLIP的方法。
2023-11-17 19:46:50
2841
原创 博客摘录「 知识蒸馏(Knowledge Distillation)」2023年10月25日
知识蒸馏训练的具体方法如下图所示,主要包括以下几个步骤:step1:训练好 Teacher 模型step2:利用高温T h i g h T_{high}T high 产生S o f t − t a r g e t Soft-targetSoft−targetstep3:利用 {S o f t − t a r g e t Soft-targetSoft−target,T h i g h T_{high}T high } 和 {H a r d − t a r g e t Hard-targetHard−ta
2023-11-11 09:54:19
141
1
原创 图像综合处理小设计实验—opencv背景分割,硬币检测
图像综合处理小设计实验,机器视觉图像的目标与背景的分割与提取,基于Sobel算子完成对图像的搜索,硬币检测及计数
2022-08-22 17:16:21
4895
2
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人