pandas模块的作用和使用方法

Pandas是Python中强大的数据分析工具,适用于处理表格数据。它支持多种数据源的读写,如csv、excel和sql等。通过DataFrame,Pandas提供数据清洗、选择、过滤、聚合等功能,并集成numpy和matplotlib。本文介绍了如何导入数据、重新设定索引、删除数据、计算以及筛选操作。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Pandas是当前最流行、最常用的数据分析工具。当处理表格数据(比如存储在电子表格或数据库中的数据)时,pandas是最适合您的工具。它将帮助您探索、清理和处理您的数据。数据表被称为DataFrame,panda支持与多种文件格式或数据源的集成(csv、excel、sql、json、parquet…)。从每个数据源导入数据是由前缀为read *的函数提供的。类似地,to_*方法用于存储数据……选择或过滤特定的行和或列?过滤条件下的数据?在pandas中可以使用切片、选择和提取所需数据的方法。它是基于numpy,且集成了matplotlib模块。

    全面支持数据分析项目的研发步骤 ( 获取->清洗 -> 处理并计算 -> 视图分析 );
    提供获取、存储数据功能 ( csv、json、excel… );
    清洗数据及扩充数据类型;
    对数据进行过滤、选择;
    聚合计算 ( max、min、mean… );
   

使用方法:

import pandas as pd
from pandas import Series
# 1、一维数组
sel = Series(data=[1,2,3,4], index=['a','b','c','d'])
result= list(sel.iteritems())

""" Result:
[('a', 1), ('b', 2), ('c', 3), ('d', 4)]
"""
# 2、传入字典
dict = {"rad" : 100,'ji':200,'sad':900

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值