01背包基础问题
有 N 件物品和一个容量是 V 的背包。每件物品只能使用一次。
第 i 件物品的体积是 vi,价值是 wi。
求解将哪些物品装入背包,可使这些物品的总体积不超过背包容量,且总价值最大。
输出最大价值。
输入格式
第一行两个整数,N,V,用空格隔开,分别表示物品数量和背包容积。
接下来有 N 行,每行两个整数 vi,wi,用空格隔开,分别表示第 i 件物品的体积和价值。
输出格式
输出一个整数,表示最大价值。
数据范围
0<N,V≤1000
0<vi,wi≤1000
输入样例
4 5
1 2
2 4
3 4
4 5
输出样例:
8
解题思路
背包问题的特点就是:每个物品仅能使用一次
状态f[i][j]定义:前 i 个物品,背包容量 j 下的最优解(最大价值):
重要变量&公式解释
f[i][j]:表示所有选法集合中,只从前i个物品中选,并且总体积≤j的选法的集合,它的值是这个集合中每一个选法的最大值.
f[i-1][j]:不选第i个物品的集合中的最大值
f[i-1][j-v[i]]+w[i]:选第i个物品的集合,但是直接求不容易求所在集合的属性,这里迂回打击一下,先将第i个物品的体积减去,求剩下集合中选法的最大值.
状态转移方程
f[i][j] = max(f[i-1][j], f[i-1][j-v[i]]+w[i])
当前的状态依赖于之前的状态,可以理解为从初始状态f[0][0] = 0开始决策,有 N 件物品,则需要 N 次决 策,每一次对第 i 件物品的决策,状态f[i][j]不断由之前的状态更新而来。
1. 当前背包容量不够(j < v[i]),没得选,因此前 i 个物品最优解即为前 i−1i−1 个物品最优解:
对应代码:f[i][j] = f[i - 1][j]。
3. 当前背包容量够,可以选,因此需要决策选与不选第 i 个物品:
选:f[i][j] = f[i - 1][j - v[i]] + w[i]。
不选:f[i][j] = f[i - 1][j] 。
我们的决策是如何取到最大价值,因此以上两种情况取 max() 。
public static void main(String[] args) {
Scanner scanner=new Scanner(System.in);
int n=scanner.nextInt();
int m= scanner.nextInt();
int h[]=new int[n];
int v[]=new int[n];
for (int i = 0; i < n; i++) {
v[i]= scanner.nextInt();
h[i]= scanner.nextInt();
}
// System.out.println(Arrays.toString(h));
// System.out.println(Arrays.toString(v));
int dp[][]=new int[n+1][m+1];
for (int i = 1; i <n+1 ; i++) {
for (int j = 1; j <m+1 ; j++) {
//不选
if (j<v[i-1]){
dp[i][j]=dp[i-1][j];
}else {
//选
dp[i][j]=Math.max(dp[i-1][j],dp[i-1][j-v[i-1]]+h[i-1]);
}
}
}
System.out.println(dp[n][m]);
优化为一维dp
状态f[j]定义:N 件物品,背包容量j下的最优解。
为什么可以这样变形呢?我们定义的状态f[i][j]可以求得任意合法的i与j最优解,但题目只需要求得最终状态f[n][m],因此我们只需要一维的空间来更新状态。
在二维情况下,状态f[i][j]是由上一轮i - 1的状态得来的,f[i][j]与f[i - 1][j]是独立的。而优化到一维后,如果我们还是正序,则有f[较小体积]更新到f[较大体积],则有可能本应该用第i-1轮的状态却用的是第i轮的状态。
状态转移方程为:f[j] = max(f[j], f[j - v[i]] + w[i] 。
int dp[]=new int[m+1];
for (int i = 1; i <n+1 ; i++) {
for (int j =m ; j >=v[i-1] ; j--) {
dp[j]=Math.max(dp[j],dp[j-v[i-1]]+h[i-1]);
}
}