- 博客(6)
- 收藏
- 关注
原创 Can Language Models Solve Graph Problemsin Natural Language?
机器人规划、多跳问答或知识探测,结构化常识推理。
2023-10-13 19:36:34 144
原创 Graph Neural Prompting with Large Language Models
1LLM包含大量的参数和它们需要大量的计算资源。2现存的方法仍然表现出语言建模在准确捕获和返回基础知识方面的固有局限性。
2023-10-10 12:10:40 349
原创 All in One: Multi-Task Prompting for Graph Neural Networks
包括任务,损失函数,支持数据,询问数据。每个任务分成点任务、边任务、图任务;损失函数分为点、边、图;支持数据分为点、边、图;询问数据分为点、边、图。我们将每个节点/边/图类视为二元分类任务,以便它们可以共享相同的任务头。
2023-10-09 21:23:11 1484 2
原创 读大模型有感
行业大模型或许不是未来发展,通用大模型经过演变后对某一领域的解决是有效的。解决行业问题的方法有:生成与通用大模型相似体量的行业大模型;在通用大模型基础上进行微调;外挂数据库用通用大模型。数据配比很重要。微调配比领域数据的比例在10%-15%左右。对sft来说,大概领域数据和通用数据比例在1:1的时候还是有不错的效果的。但是作者提出的“通用大模型对行业大模型的降维打击”,可能需要等到通用大模型的量级能够对行业大模型量级进行降维打击才能实现。
2023-09-14 20:33:38 146 1
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人