AI周刊(2024.7.16-7.21)

OpenAI宣布GPT-4o Mini模型

OpenAI 凭借 GPT-4o Mini 进入了 SLM 领域,被吹捧为市场上最具成本效益的小型模型。GPT-4o Mini 的输入价格仅为每百万代币 15 美分,输出价格为每百万代币 60 美分,大大降低了 AI 集成的财务障碍。

OpenAI 使用 GPT-4o Mini 的定价策略可能会催化新一轮的 AI 驱动创新浪潮,尤其是在初创公司和小型企业中。通过大幅降低 AI 集成成本,OpenAI 有效地降低了 AI 解决方案的进入门槛。这可能导致各行各业对人工智能的采用激增,从而可能加快多个行业的技术创新和颠覆步伐。

比较

亮点

  • 多模态推理能力:具备文本、图像、音频、视频的多模态推理能力,但在上线初期只能处理文字和图像生成任务,最终目标是支持所有其他类型内容的处理。在 API 层面,支持 128k、16k 输入 tokens(图像和文本)。
  • 价格优势:GPT-4o mini 每百万输入 tokens 为 15 美分(约 1.09 元人民币),每百万输出 tokens 为 60 美分(约 4.36 元人民币)。相比原版 GPT-4o 模型便宜 96%到 97%,而比前一代 GPT-3.5turbo 模型则便宜了 60%到 70%。
  • 性能表现:在文本智能和多模态推理方面的基准性能超越了 GPT-3.5turbo,在 LMSYS「聊天机器人对战」排行榜上强过 GPT-4;支持 128k token 的长上下文窗口,以及每个请求最多 16k token 的输出,能够记忆比 GPT-3.5turbo 长得多的内容和对话,并能在单次输出更长的回答。在 MGSN(数学推理)、MATH(数学解决)、HUMAN EVAL(代码生成)等方面优势明显;得益于与 GPT-4o 共享的改进 token 生成器,处理非英语文本更加经济高效。
  • 安全策略:是 OpenAI 首个使用全新安全策略——“指令层次结构”的 AI 模型,这种策略要求 AI 系统优先考虑一些指令(例如来自 OpenAI 公司的预设命令),从而使得恶意用户更难让这种工具执行“本不应该执行的操作”。

微软推出SpreadsheetLLM

论文地址: https://arxiv.org/pdf/2407.09025

Microsoft研究人员推出了“SpreadsheetLLM”,这是一种新的人工智能模型,旨在理解和处理电子表格,这是企业人工智能世界的重大发展。

SpreadsheetLLM 将大型语言模型 (LLMs) 的强大功能与电子表格中的结构化数据相结合。“SpreadsheetLLM是一种将电子表格内容编码为可用于大型语言模型(LLMs)的格式的方法,并允许这些模型对电子表格内容进行推理,”研究人员指出,强调了该领域对改进AI工具的迫切需求。

管道

Microsoft 的 SpreadsheetLLM 系统使用创新的管道来压缩和编码电子表格,使大型语言模型 (LLMs) 能够有效地理解和分析复杂的电子表格数据。SheetCompressor 模块在优化 AI 在电子表格任务中的性能方面发挥着关键作用,同时实现了最先进的准确性。(来源:arxiv.org)

研究人员强调了电子表格在商业世界中无处不在和重要性,并指出它们被用于广泛的任务,从简单的数据输入和分析到复杂的财务建模和决策。然而,他们指出,“由于数据的结构化性质以及公式和引用的存在,现有的语言模型很难理解和推理电子表格内容。

SpreadsheetLLM 通过以LLMs可以理解和处理的方式对电子表格数据进行编码来弥合这一差距。该模型使用一种新颖的编码方案,该方案保留了电子表格中的结构和关系,同时使其可供语言模型访问。

SpreadsheetLLM 的潜在应用非常广泛,从自动执行日常数据分析任务到提供基于电子表格数据的智能见解和建议。通过对LLMs电子表格内容进行推理,回答有关数据的问题,甚至根据自然语言提示生成新的电子表格,SpreadsheetLLM为企业中的人工智能辅助数据分析和决策开辟了令人兴奋的可能性。

SpreadsheetLLM 的主要优势之一是它能够使更广泛的用户更容易访问和理解电子表格数据。借助自然语言处理的强大功能,用户可以使用简单的英语而不是复杂的公式或编程语言来查询和操作电子表格数据。这可以使对数据见解的访问民主化,并使组织内的更多人能够做出数据驱动的决策。

此外,SpreadsheetLLM 可以帮助自动执行与电子表格数据分析相关的许多繁琐且耗时的任务,例如数据清理、格式化和聚合。通过利用人工智能的力量,企业可以节省无数的时间和资源,使员工能够专注于需要人类判断和创造力的高价值活动。

字节推出豆包AI

网址:www.doubao.com

基于人工智能的搜索引擎豆包 AI,它可以通过自然语言处理技术来快速整理数十条复杂的检索结果,将最关心的关键信息分析呈现出来,并且支持多轮提问直到搞清楚所有的问题为止。豆包在旅游和文件处理等方面都展示出了非常强大的能力,并且不含任何广告信息,提供了纯粹的高价值的信息体验

亮点

  • 多种功能:融合了聊天机器人、写作助手以及英语学习助手等功能,可以回答各种问题并进行对话,帮助用户获取信息;能协助文本创作、提供语言学习指导,还可用于编程、撰写演讲稿、搜寻热门信息和编排剧本等。
  • 多平台支持:支持网页端、iOS 和 Android 平台。网页端可直接访问官网使用,iOS 端需使用 TestFlight 安装,Android 端可通过官网或相关应用商店下载 APP 使用。支持手机号码、抖音、以及苹果账号登录。
  • 个性化体验:用户可以依据自己的喜好挑选不同语音进行交流;也能训练和定制属于自己的智能体,使其更符合自己的聊天喜好。
  • 界面设计:有着简单清爽的界面设计,无需学习,打开即可使用。
  • 语音功能:具备便捷而且准确的语音输入功能,支持不同的方言,识别准确;还能提供自然且接近人声的语音输出。
  • 信息获取:可以随时获取最新信息,其知识涵盖了各个领域,并在不断更新。

2024 年 5 月 15 日,字节跳动宣布豆包大模型正式开启对外服务,主力模型在企业市场的定价为 0.0008 元/千 tokens,大约为 1500 多个汉字,比行业便宜 99.3%。

跟前 OpenAI 创始成员 AI 大神 卡帕西学习人工智能

Github 项目地址:(https://github.com/karpathy/LLM101n)

7月17日,特斯拉前人工智能总监、OpenAI 研究员 Andrej Karpathy 在X上发表贴文,宣布创立 “AI 原生” 教育平台 Eureka Labs。

亮点

  • 权威人物:Andrej Karpathy 是 OpenAI 的创始成员之一,也曾任特斯拉人工智能主管,在人工智能领域,特别是计算机视觉和深度学习技术方面有卓越成就和广泛影响力,这样的“AI 大神”投身教育领域,无疑会吸引众多关注。
  • 创新模式:EurekaLabs 致力于创建“人工智能原生”的教育体验,通过人工智能助教与人类教师的合作,试图解决优秀教师资源稀缺的问题,让全球更多人能够获得优质的教育资源。这种“教师+AI 共生”的模式具有开创性。
  • 广泛受众:目标是让全球 80 亿人都有机会学习人工智能,强调了教育的普及性和大规模覆盖,这一愿景非常宏大。
  • 课程设计:其首门课程 LLM101N 专为本科生设计,教学生如何训练自己的大语言模型,课程内容涵盖了语言建模、机器学习、反向传播、注意力机制、Transformer、优化、数据集、微调、多模态等多个方面,由浅入深,能让学生对人工智能、大模型和深度学习有深入了解,并创建类似于 ChatGPT 的 Web 应用。
  • 个人热情与经验:卡帕西表示创办 EurekaLabs 是他在人工智能和教育领域近 20 年热情的结晶。他对教育的兴趣从线上魔方教程到斯坦福的课程,再到近期的 AI 系列;而其在 AI 领域的工作涵盖了斯坦福的学术研究、特斯拉的产品开发以及 OpenAI 的通用人工智能研究。丰富的经历和对教育的热忱为该项目注入了动力。
  • 行业影响:为 AI 教育赛道注入新活力,可能推动人工智能在教育领域的进一步发展和应用,也将引发人们对于 AI 辅助教育的更多思考和探索,包括如何平衡 AI 助教与人类教师的职责、如何确保学生隐私和数据安全等。

卡帕西在 X 平台(原推特)上分享了他的愿景,他认为理想的学习体验应由那些对教学充满热情、极具耐心且精通多种语言的学科专家指导,但这种专家非常稀缺,无法亲自指导全球 80 亿人,而通过生成式人工智能,这种学习体验终于变得更加可行。

目前,EurekaLabs 更像是一个全新的人工智能学习平台,仍处于初期发展阶段。未来,它可能不仅仅是一个在线学习平台,还将通过人工智能助教与人类教师的协作,提供个性化的指导,扩大优质教育的可及性。不过,在其发展过程中,也需要认真考虑和解决一些问题,如在人工智能助教和人类教师之间划分清晰的职责、保护学生的隐私和数据安全等。

官网:https://eurekalabs.ai/

Nvidia 和 Mistral 的新模型“Mistral-NeMo”将企业级 AI 引入台式电脑

英伟达和法国初创公司 Mistral AI 今天联合宣布发布一种新的语言模型,旨在将强大的 AI 功能直接引入商用台式机。该模型名为 Mistral-NeMo,拥有 120 亿个参数和 128,000 个令牌上下文窗口,使其成为寻求在不需要大量云资源的情况下实施 AI 解决方案的企业的强大工具。

英伟达应用深度学习研究副总裁布莱恩·卡坦扎罗(Bryan Catanzaro)在最近接受VentureBeat采访时强调了该模型的可访问性和效率。“我们正在推出一个与Mistral共同训练的模型。这是一个 120 亿参数的模型,我们正在 Apache 2.0 下推出它,“他说。“我们对这个模型在许多任务中的准确性感到非常兴奋。”

GPU 制造和 AI 硬件巨头 Nvidia 与欧洲 AI 领域的后起之秀 Mistral AI 之间的合作代表了 AI 行业企业解决方案方法的重大转变。通过专注于更紧凑但更强大的模型,该合作伙伴关系旨在使对高级人工智能功能的访问民主化。

亮点

  • 性能优越:在多项基准测试中,击败了 gemma29b 和 llama38b。除了在 mmlu 基准上不如 gemma29b,在多轮对话、数学、常识推理、世界知识和编码等基准中均超越了二者。
  • 多语言支持:经过函数调用训练,支持包括中文在内的 100 多种语言,在英语、法语、德语、西班牙语、意大利语、葡萄牙语、中文、日语、韩语、阿拉伯语和印地语等方面表现突出。
  • 高效的分词器:使用基于 tiktoken 的全新分词器 tekken,已针对 100 多种语言进行训练,比之前模型中使用的 sentencepiece 分词器更有效地压缩自然语言文本和源代码,在压缩多种语言的文本时效率更高。
  • 易于使用和部署:由于依赖于标准架构,兼容性强,可直接替代任何使用 mistral7b 的系统。它采用 fp8 数据格式进行模型推理,能减少内存大小并加快部署速度,可在几分钟内部署到任何地方。
  • 企业级优化:支持在单个 nvidia l40s、nvidia geforce rtx4090 或 nvidia rtx4500 gpu 的内存上运行,能高效低成本地运行,并保障安全性和隐私性。采用属于 nvidia ai enterprise 一部分的企业级软件,具有专用功能分支、严格的验证流程以及企业级安全性的支持。遵循 apache 2.0 许可证发布,允许商业使用。
  • 先进的训练和优化:在 nvidia 的 dgx cloud ai 平台完成训练,利用了英伟达优化的硬件和软件生态系统,包括加速大语言模型推理性能的 nvidia tensorrt-llm,以及构建自定义生成 ai 模型的 nvidia nemo 开发平台等,以推进和优化模型性能。它使用 nvidia nemo 的一部分 megatron-lm 进行训练,在训练中配备 3,072 个 h100 80gb tensor core gpu。经过高级微调和对齐阶段,在遵循精确指令、推理、处理多轮对话和生成代码方面表现得更好。

目前,用户可以通过 ai.nvidia.com 作为 nvidia nim 体验 Mistral-NeMo,可下载的 nim 版本即将推出。开发者现在可以使用 mistral-inference 试用 Mistral-NeMo,并使用 mistral-finetune 对其进行微调。该模型在 laplateforme 上以 open-mistral-nemo-2407 的名称公开。

Mistral-NeMo 的推出为企业提供了一种性能强大、易于部署且具有成本效益的人工智能解决方案,有助于解决企业在采用人工智能时面临的数据隐私、延迟和高成本等问题,使更多资源有限的小型企业能够利用人工智能功能。不过,英伟达应用深度学习研究副总裁布莱恩·卡坦扎罗表示,这一模型虽然对计算性能的要求显著降低,但尚未降低到能在智能手机上运行的程度,其预期用例是笔记本电脑或台式电脑。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值