《数字图像处理》自学笔记(一)

这篇博客介绍了数字图像处理的基础知识,包括图像的概念、类型和转换,图像获取的采样与量化,图像数据结构与特征,以及图像变换中的傅里叶变换。博主通过自学武汉大学的MOOC课程,分享了学习心得,强调了数字图像处理在精度、再现性和通用性上的优势。然而,博主认为课程在傅里叶变换部分讲解不够深入,决定转向冈萨雷斯的书籍继续学习图像增强等内容。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

学习目标:数字图像处理

学习内容:

MOOC课 武汉大学 《数字图像处理》自学
https://www.icourse163.org/learn/WHU-1002332010?tid=1450249452#/learn/content?type=detail&id=1214403361


笔记:

一、绪论

1.1:数字图像处理的概念

  • 彩色图像和非彩色图像,彩色图像由三色图组成,非彩色图像由黑白和各种灰色组成黑白图像,记录物体的光强度。
  • 模拟图像和数字图像,按图像空间坐标和亮度(或色彩)的连续性可分为模拟图像和数字图像。模拟图像可用连续函数来描述,光照位置和光照强度均为连续变化的。数字图像可用矩阵或数组来描述,空间位置和亮度都为离散的整数值。
  • 数字图像需要借助计算机才能够显示,数字图像处理也称为计算机图像处理。

1.2:数字图像处理的内容和特点

狭义图像处理:图像到图像的操作,包括图像增强、图像压缩等,处理对象为像素。
图像分析:对图像中的目标进行检测和测量,从而获得图像描述 的处理,处理对象为目标。
图像理解:在图像分析的基础上,对图像中的目标用符号加以表示,并研究符号的属性和符号间的关系。

  • 图像的数字化:由模拟图像获取满足需求的数字图像
  • 图像变换 :处理问题简化、有利于特征提取、加强对图像信息的理解,重点:傅里叶变换的算法、性质和应用。
  • 图像增强:增强图像的有用信息,削弱噪声的干扰。
  • 图像的回复与重建:把退化、模糊了的图像复原。包括图像辐射校正和几何校正的内容。
  • 图像编码:简化图像的表示,压缩图像数据,便于存储和传输。

1.3:数字图像处理的应用

数字图像处理的特点

精度高:数字化中不管用多少比特表示,只需要改变程序的参数,处理方法不变,而模拟图像需要对装置进行改进
再现性好:以数组或数组集合表示,数据不易丢失或遭破坏,而模拟图像处理中,容易受各种干扰因素影响。
通用性、灵活性强:对于各种图像,虽然所用设备和精度各不相同,但将图像数字化后,对于计算机而言,都可进行相同处理操作。同时,可以对图像进行各种处理,如:合成、拼接、放大、缩小等。


笔记:

二、数字图像获取

2.1数字图像化:

图像数字化—把一幅图画分割成一个个小区域(像元或像素),并将各小区域用整数值来表示,形成一幅点阵的数字图像。

数字图像化的过程包括

  • 采样
  • 量化

像素属性=(位置,灰度/颜色)

一、数字图像的表示
数字图像用矩阵来描述
在这里插入图片描述

数字图像根据灰度级数的差异可分为:黑白图像、灰度图像、彩色图像

黑白图像:每个像素只能是黑或者白,没有中间过渡,又称为二值图像。像素值为0或1
灰度图像:每个像素的信息由一个量化的灰度来描述,没有彩色信息。 八比特数值表示,[0,255]。
彩色图像: RBG红绿蓝三个通道分量构成,分别由不同的灰度级描述,每一个灰度级使用一个字节,即彩色图像一个像素需要三个字节。24位表示三个通道

二、图像数字化过程

  • 采样:将空间上连续的图像变换为离散点的操作
    采样间隔:采样点之间的距离
    采样孔径:
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值