2021-03-25

博客介绍了如何使用期望动态规划(期望DP)解决在n个点中选择点的问题。文章详细阐述了期望DP的状态转移方程,并提供了两种不同的解法,一种是从后往前推导至起点状态,另一种是直接根据状态转移方程求解。代码实现分别展示了这两种方法,最后给出了完整的解决方案。
摘要由CSDN通过智能技术生成

原题链接

知识点:期望DP

划重点:期望DP要从后往前推,终点的期望为0

设选出m个点的的期望是X,选出m + 1个点的期望是Y
则X = 1 + X * m / n + Y * (n - m) / n

下面说明公式的由来:

1:X状态下要选出一个点,这算一次操作,因此+1

X * m / n:若新选的点是选过的点(这样的概率是m / n),即选后没用并没有使状态发生改变,因此期望仍是X

Y * (n - m) / n:若新选的是未选过的点(这样的概率是(n - m) / n),选后变成选出了m + 1个点的状态,因此期望是Y

上式化简得: X= n / (n - m) + Y

初始状态是已选出一个点
做法1:从后往前推到 f[1] 即可得到答案
做法2:由化简后的公式可以看出,答案就是从

法1 代码

#include <iostream>
#include <cstdio>

using namespace std;

const int N = 200010;

double f[N];
int n, m;

double dp(int k) {
    if (k == n) return 0;
    return n * 1.0 / (n - k) + dp(k + 1);
}
int main() {
    cin >> n;
    printf("%f", dp(1));
    return 0;
}

法二代码

#include <iostream>
#include <cstdio>

using namespace std;

const int N = 200010;

double f[N];
int n, m;

double dp(int k) {
    if (k == n) return 0;
    return n * 1.0 / (n - k) + dp(k + 1);
}
int main() {
    cin >> n;


    double ans = 0;
    for (int i = 1; i < n; i ++)    ans += n / (n * 1.0 - i);
    printf("%f", ans);
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值