4-激活函数:给机器注入灵魂

本文介绍了人工智能中使用激活函数(如Sigmoid函数)的原因,以及如何将其应用于线性预测模型中,通过梯度下降法进行参数优化。文章详细解释了链式法则在计算代价函数梯度中的作用,并提供了编程实验示例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

声明

本文章基于哔哩哔哩付费课程《小白也能听懂的人工智能原理》仅供学习记录、分享,严禁他用!!如有侵权,请联系删除

目录

一、知识引入

(一)背景

(二)激活函数

(三)引入激活函数后

(四)梯度下降

1、复合函数求导--链式法则

2、引入激活函数后的代价函数e对w的导数

3、激活函数的意义

二、编程实验

(一)将sigmoid激活函数带入预测模型中

(二)复合函数的链式求导法则求出代价函数在w和b上的导数

 (三)梯度下降

(四)完整代码


一、知识引入

(一)背景

        人类在思考时,往往不会产生精确的数值估计或拟合,而更常做的事情是分类。eg:给定一个馒头,更倾向于将馒头分为“能吃饱”和“吃不饱”这两类,而不会在大脑中构建出一个精确的函数曲线。

        对于小蓝也是,更希望把豆豆分成“有毒”和“无毒”这两类。

        纵坐标不再表示毒性的大小,而表示有毒的概率,1表示有毒,0表示无毒。不存在中间值。是一个两级分类的分化问题。之前的预测函数y = wx + b变得不再适合。我们更希望可以在大于某个阈值时输出1,小于阈值时固定输出0

(二)激活函数

        可以利用一个分段函数实现这一点,把之前线性函数的结果,丢进一个分段函数中进行二次加工。这个新加入的分段函数就是--激活函数

        当然,这样的阶跃函数作为激活函数,并不十分美好。(导数处处为0,不利于梯度下降)

        更好、更常用的函数--Logistic函数。标准的Logistic函数【圆润并且取值在[0,1],导数处处不为0

        (Sigmoid函数指的是一切具有S形状的函数,Logistic函数属于其中的一种,也是最常用的一种。

        而Logistic我们一般也是使用他的标准形式,也就是取L=1&#

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Star_KeyW

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值