- 博客(7)
- 收藏
- 关注
原创 广告投放效果分析
分析目的实现淘宝展示广告精准投放,提高广告投放效果。分析思路为达到广告精准投放的效果,分别从三方面分析确定:1.广告投放渠道2.广告投放时间3.广告投放目标人群1.根据三个方面的不同广告投放效果(以页面访问占比,即点击率为指标衡量广告投放效果(CPC相关);2.以用户行为为指标衡量广告投放效果(CPA相关)),找出实现广告精准投放的方案。数据预处理#导入库import pandas as pdimport numpy as npimport matplotlib.pyplot as
2020-09-14 18:30:15
3774
1
原创 棋牌游戏用户流失预测
棋牌游戏用户流失预测数据背景数据集为某棋牌游戏一周的用户数据,详细指标如下:用户ID、是否流失、性别、登录总次数、站内好友数、等级、积分、玩牌局数、赢牌局数、输牌局数、正常牌局、非正常牌局、最高牌类型。根据这些特征值预测自然流失用户,并对可能流失的用户采取一定的挽留措施。数据预处理#导入包%matplotlib inlineimport pandas as pdimport numpy as npimport seaborn as snsfrom sklearn.model_selecti
2020-09-10 11:28:04
1038
原创 游戏APP下载安装分析
游戏APP下载安装分析数据背景根据某款游戏APP安卓用户的安装信息和注册信息来作简要的数据分析,从市场推广目标这个模块来进行业务分析。一般情况下,移动游戏数据分析指标可以分解为3个模块:A、市场推广相关指标(包括:激活、上线、各节点转化率、成本指标、渠道质量等),它的任务是帮助我们进行“渠道优化”和“产品优化”,最小化用户获取成本,实现更多的新增导入;B、用户活跃 & 留存相关指标(包括:DAU\MAU、AT(日均使用时长)、日、周、月留存、回归率等),它的任务是帮助我们在宏观数据表现层面
2020-09-10 11:27:46
493
原创 北京二手房价格预测
北京二手房价格预测项目介绍根据链家上的北京二手房信息,对数据进行进一步的清洗处理,分析各特征和价格之间的关系,筛选对价格影响比较显著的特征,探索北京二手房的价格情况,并建立房价预测模型数据预处理读取数据#导入库import numpy as npimport pandas as pdimport randomfrom datetime import datetimefrom matplotlib import pyplot as pltimport seaborn as snsfro
2020-09-06 15:36:55
2495
2
原创 北上广深租房信息分析
北上广深租房信息分析分析目的根据链家网北上广深四个城市的所有租房数据(时间节点:2019年2月25日),数据共有105258条。分析不同地区,租房的高低主要与哪些因素有关不同的因素导致的房价差异大概是多少数据读取数据清洗数据分析与可视化...
2020-09-06 15:36:03
1257
原创 天猫优惠券使用情况预测的逻辑回归分析
天猫优惠券使用情况预测的逻辑回归分析背景基于25317条天猫用户的基本特征、行为信息,使用python分析使用优惠券消费行为特征,并建立逻辑回归模型进行预测。分析思路数据展示#导入要使用的模块import pandas as pdimport numpy as npimport matplotlib.pyplot as pltfrom sklearn.linear_model import LogisticRegressionfrom sklearn.preprocessing imp
2020-09-01 20:03:15
2432
2
原创 电商用户行为数据分析
电商用户行为数据分析项目背景根据淘宝APP平台2017年11月25日至2017年12月3日之间,有行为的约一百万随机用户的所有行为(行为包括点击、购买、加购、喜欢),对淘宝用户行为进行分析,从而探索淘宝用户的行为模式。数据来源https://tianchi.aliyun.com/dataset/dataDetail?dataId=649&userId=1...
2020-08-31 19:54:49
2769
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人