直线的方向向量与平面的法向量
法向量
- 定义
垂直于平面的直线所表示的向量为该平面的法向量。 - 平面的法向量:ax+by+cz+d=0,向量(a,b,c)就是其法向量。
方向向量
- 定义
方向向量是平行于直线的向量 - (x-x0)/m=(y-y0)/n=(z-z0)/p,其方向向量就是(m,n,p)
如果一条直线与一平面平行,那么直线的方向向量与平面的法向量关系
直线方向向量s与平面法向量n的数量积为0。即:s•n=0。二者是垂直的关系。
如果一条直线与一平面垂直,那么直线的方向向量与平面的法向量关系
直线方向向量s与平面法向量n是平行的。即:s=λn,其中λ是常数。
根据方向向量求参数方程
如果空间直线的方向向量是(m,n,p),则空间直线的向量参数方程是:
x=x0+mt
y=y0+nt
z=z0+pt
(x0,y0,z0)是空间直线上的一点.