第四阶段-CV理论基础-目标检测

目标检测算法发展

在这里插入图片描述

几个概念

RPN(RegionProposal Network)区域生成网络
Region proposals又称Regions of interest(RIO)就是找目标区域,找到的目标区域又叫bounding box。
Anchors

区域RCNN

R-CNN
在这里插入图片描述
实际上是将图框出各部分,然后再去提取特征,再通过SVM分类判断,每个类都采用一个SVM模型,而后各类再回归,计算量特别大且繁琐

  • 每张图片2000多个区域都要进行卷积计算

SPP-Net
改进R-CNN:(实际上是将卷积提到了区域框划分的前面)

  • 不再是采用各个框图算出后再去放到CNN提取特征,而是直接将整个图放进去。
  • 引入空间金字塔池化:为不同尺寸的区域在Conv5输出上提取特征、映射到尺寸固定的全连接层。
    在这里插入图片描述
    问题
  • 特征离线训练,耗内存
  • 复杂多阶段,时间仍然太长
  • SPP层之前的所有卷积层参数不能fine tune

FastR-CNN
改进:

  • 更快
  • 实现了更高的mAP(平均准确率)
  • 实现了端对端的(end-to-end)的单阶段训练-多任务损失函数
  • 所有层的函数都可以fine-tune
  • 不需要离线储存特征文件

FasterR-CNN
取代离线Selecttive Search模块-解决性能瓶颈
进一步共享卷积层计算
基于Attention注意机制-引导Fast R-CNN关注区域
Region proposals量少质优-高precision、高recall
在这里插入图片描述
R-FCN
适应全卷积化CNN结构,提出全卷积化设计

  • 共享ResNet的所有卷积层
  • 引入变换敏感性
    • 1 位置敏感分值图
    • 2 位置敏感池化

YOLO系列

YOLO将物体检测任务当做一个regeression问题来处理,通过YOLO,每张图像只需要“看一眼”就能得出图中都有哪些物体和这些物体的位置。
YOLOv1
网络又24个卷积层与2个全连接层构成,网络入口为448*448,图片进入网络先经过resize,网络的输出结果为一个张量。
优点

  • 速度快
  • 假阳性率低
  • 能够学到更加抽象的物体特征
    不足
  • 检测精度低
  • 容易产生定位错误
  • 对小物体的检测效果不好,尤其是密集的小物体
    YOLOv2
    基础模型采用Darknet-19
  • 使用较多的3*3卷积核,在每一次池化操作后把通道数翻倍
  • 网络使用了全局平均池化
  • 采用BN稳定模型训练
    YOLOv3
  • 使用一个53层,7个卷积得到第一个特征图谱,在这个特征图谱上进行第一次预测。
  • 然后从后向前获得倒数第三个卷积层的输出,进行一次卷积一次*2上采样,将上采样特征与第43个卷积特征连接,经过7个卷积得到第二个特征图谱,在这个特征图谱上做第二次预测
  • 然后从后向前获得倒数第3个卷积层的输出,进行一次卷积

疑惑

  • 什么是Fine tune
  • 什么是
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值