Python基础系列2——Numpy数值计算及分析

Python Numpy基础教程:数值计算与数据分析
这篇博客介绍了Python的Numpy库,详细讲解了如何创建、索引、计算和统计numpy数组,包括有规则和无规则数组的生成,数组属性、统计分析,以及对鸢尾花数据集的实战应用。强调了np.linspace与np.arange的区别,以及在处理多维数组时的注意事项。

1、实验内容:

(1) numpy数组的建立、索引、计算、统计等。
(2) 利用numpy对数据集“iris.data”进行分析。

2、实验过程:

2.1 numpy数组的建立、索引、计算、统计等

(1)numpy数组分析
①查看版本信息
在这里插入图片描述

②数组属性

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

(2) numpy数组的建立

①有规则数组:
Ⅰ、arange(起点,终点,步长) 起点与终点可省,步长不可省
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

Ⅱ、np.linspace(起点,终点,等分数)
结果是左闭右闭的区间,即起点与终点都可以取到
在这里插入图片描述

Ⅲ、数组数据类型的转变
在这里插入图片描述
在这里插入图片描述

②无规则(随机)数组
Ⅰ、创建无约束随机数组
在这里插入图片描述

Ⅱ、创建均匀分布随机数组:每一段出现的概率均等
在这里插入图片描述

Ⅲ、正态分布随机数组
在这里插入图片描述

Ⅳ、均匀分布与正态分布的二维数组
在这里插入图片描述

Ⅴ、randint:产生随机整数。randint(起点,终点,size)
在这里插入图片描述

Ⅵ、shuffle:打乱顺序;reshape:改变形状。
在这里插入图片描述
在这里插入图片描述

③全0数组
在这里插入图片描述

④全1数组
在这里插入图片描述在这里插入图片描述

⑤创建主对角线是1,其余为0的矩阵
在这里插入图片描述

⑥概率划分(抽奖问题)
random.choice(整数或序列,size,p)
一般不给定p,此时默认为等概率划分

在这里插入图片描述
在这里插入图片描述

(3) numpy数组的索引
①简单索引分析
在这里插入图片描述
在这里插入图片描述

②根据索引,挑选一维数组中

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值