一:题目:
哈利·波特要考试了,他需要你的帮助。这门课学的是用魔咒将一种动物变成另一种动物的本事。例如将猫变成老鼠的魔咒是haha,将老鼠变成鱼的魔咒是hehe等等。反方向变化的魔咒就是简单地将原来的魔咒倒过来念,例如ahah可以将老鼠变成猫。另外,如果想把猫变成鱼,可以通过念一个直接魔咒lalala,也可以将猫变老鼠、老鼠变鱼的魔咒连起来念:hahahehe。
现在哈利·波特的手里有一本教材,里面列出了所有的变形魔咒和能变的动物。老师允许他自己带一只动物去考场,要考察他把这只动物变成任意一只指定动物的本事。于是他来问你:带什么动物去可以让最难变的那种动物(即该动物变为哈利·波特自己带去的动物所需要的魔咒最长)需要的魔咒最短?例如:如果只有猫、鼠、鱼,则显然哈利·波特应该带鼠去,因为鼠变成另外两种动物都只需要念4个字符;而如果带猫去,则至少需要念6个字符才能把猫变成鱼;同理,带鱼去也不是最好的选择。
输入格式:
输入说明:输入第1行给出两个正整数N (≤100)和M,其中N是考试涉及的动物总数,M是用于直接变形的魔咒条数。为简单起见,我们将动物按1~N编号。随后M行,每行给出了3个正整数,分别是两种动物的编号、以及它们之间变形需要的魔咒的长度(≤100),数字之间用空格分隔。
输出格式:
输出哈利·波特应该带去考场的动物的编号、以及最长的变形魔咒的长度,中间以空格分隔。如果只带1只动物是不可能完成所有变形要求的,则输出0。如果有若干只动物都可以备选,则输出编号最小的那只。
输入样例:
6 11
3 4 70
1 2 1
5 4 50
2 6 50
5 6 60
1 3 70
4 6 60
3 6 80
5 1 100
2 4 60
5 2 80
输出样例:
4 70
二:思路分析:
多源点最短路径,分析题目时,如果不知从何下手 可以从数据入手 分析数据特征 比自己干推 要省点时间
三:上码
//分析输出 0 时 那是说明图是不连通的 统计结点个数 不够N则输出0 (只带1只动物是不可能完成所有变形要求的);
// 多源点最短路径问题 ,从数据分析来看 带4在去则 最长的路径长度也就是 70,那么的话 如果我选择1的话 那么 在他这个最短路径当中,最长的是 100 ,那么也就是说
//求出所有点 当中最长的那个路径长度进行比较,选择最小的那个即是要选择的结点 。如果有相同最小长度的结点 那么选择其中编号 最小的
#include<bits/stdc++.h>
using namespace std;
#define infinite 99999
int N,M;
int cnt;//记录访问结点的个数
typedef struct Graph* PtrGraph;
typedef struct Graph
{
int Ne;
int Nv;
int Data[101][101];
}graph;
void creatGraph(PtrGraph G)
{
int i,j,w;
cin >> N >> M;
G->Nv = N;
G->Ne = M;
for(int i = 1; i <= G->Nv; i++)
{
for(int j = 1; j <= G->Nv; j++)
{
G->Data[i][j] = infinite;//初始化 设置为无穷大 方便没有链接的点表示距离
if(i == j)
G->Data[i][j] = 0;
}
}
for(int k = 0; k < G->Ne; k++)
{
cin >> i >> j >> w;
G->Data[i][j] = w;
G->Data[j][i] = w;
}
}
//每次将其中的 最大值 返回
int dijkstra(PtrGraph G,int a,int vis[])
{
int dist[101] = {0};
int max = 0;
vis[a] = 1;
cnt++;
for(int i = 1; i <= G->Nv; i++)
{
dist[i] = G->Data[a][i];
}
while(1)//将剩余的结点 进行多次求最小值;
{
int m = -1;
int min = infinite;
for(int i = 1; i <= G->Nv; i++)
{
if(dist[i] < min && vis[i] != 1)
{
min = dist[i];
m = i;
}
}
if(m == -1)
break;//证明已经没有最小的权值了
vis[m] = 1;//记录已经访问过的
cnt++;//记录访问的结点个数
for(int i = 1; i <= G->Nv; i++)
{
if( vis[i] != 1 && G->Data[m][i] + min < dist[i])
{
dist[i] = G->Data[m][i] + min;
}
}
}
for(int i = 1; i <= G->Nv; i++)
{
//cout << dist[i] << ' ';
if(dist[i] > max)
{
max = dist[i];
// cout << dist[i] << ' ';
}
}
return max;
}
int main()
{
PtrGraph G;
int flag = 0;
vector<int>v;
int min = 1000,array[101],k = 1;
G = (PtrGraph)malloc(sizeof(struct Graph));
creatGraph(G);
int a = 1;
v.push_back(a);//vector容器的下标 是从0开始 我们想要的是从1开始
for(int i = 1; i <= G->Nv && flag ==0; i++)
{
cnt = 0;
int visited[101] = {0};
int temp = dijkstra(G,i,visited);
array[k++] = temp;
v.push_back(temp);//这里vector容器的下标 是从1开始
if(cnt != N)
{
flag = 1;
}
}
if( flag == 1)
cout << "0" << endl;
else
{
sort(v.begin()+1,v.end());
for(int i = 1; i <= k; i++)
{
if(array[i] == v[1])
{
if( i < min )
min = i;
}
}
cout << min << ' ' << v[1] << endl;
}
}