7-8 哈利·波特的考试 (25 分)(详解+思路分析)真香啊

一:题目:

哈利·波特要考试了,他需要你的帮助。这门课学的是用魔咒将一种动物变成另一种动物的本事。例如将猫变成老鼠的魔咒是haha,将老鼠变成鱼的魔咒是hehe等等。反方向变化的魔咒就是简单地将原来的魔咒倒过来念,例如ahah可以将老鼠变成猫。另外,如果想把猫变成鱼,可以通过念一个直接魔咒lalala,也可以将猫变老鼠、老鼠变鱼的魔咒连起来念:hahahehe。

现在哈利·波特的手里有一本教材,里面列出了所有的变形魔咒和能变的动物。老师允许他自己带一只动物去考场,要考察他把这只动物变成任意一只指定动物的本事。于是他来问你:带什么动物去可以让最难变的那种动物(即该动物变为哈利·波特自己带去的动物所需要的魔咒最长)需要的魔咒最短?例如:如果只有猫、鼠、鱼,则显然哈利·波特应该带鼠去,因为鼠变成另外两种动物都只需要念4个字符;而如果带猫去,则至少需要念6个字符才能把猫变成鱼;同理,带鱼去也不是最好的选择。

输入格式:
输入说明:输入第1行给出两个正整数N (≤100)和M,其中N是考试涉及的动物总数,M是用于直接变形的魔咒条数。为简单起见,我们将动物按1~N编号。随后M行,每行给出了3个正整数,分别是两种动物的编号、以及它们之间变形需要的魔咒的长度(≤100),数字之间用空格分隔。

输出格式:
输出哈利·波特应该带去考场的动物的编号、以及最长的变形魔咒的长度,中间以空格分隔。如果只带1只动物是不可能完成所有变形要求的,则输出0。如果有若干只动物都可以备选,则输出编号最小的那只。

输入样例:
6 11
3 4 70
1 2 1
5 4 50
2 6 50
5 6 60
1 3 70
4 6 60
3 6 80
5 1 100
2 4 60
5 2 80
输出样例:
4 70

二:思路分析:

多源点最短路径,分析题目时,如果不知从何下手 可以从数据入手 分析数据特征 比自己干推 要省点时间

三:上码

//分析输出 0 时 那是说明图是不连通的 统计结点个数 不够N则输出0 (只带1只动物是不可能完成所有变形要求的);
// 多源点最短路径问题 ,从数据分析来看 带4在去则 最长的路径长度也就是 70,那么的话 如果我选择1的话 那么 在他这个最短路径当中,最长的是 100 ,那么也就是说
//求出所有点 当中最长的那个路径长度进行比较,选择最小的那个即是要选择的结点 。如果有相同最小长度的结点 那么选择其中编号 最小的  
#include<bits/stdc++.h>
using namespace std;
#define infinite 99999

int N,M;
int cnt;//记录访问结点的个数
typedef struct Graph* PtrGraph;
typedef struct Graph
{
       int Ne;
       int Nv;
       int Data[101][101];
}graph;

void creatGraph(PtrGraph G)
{
    int i,j,w;
    cin >> N >> M;
    G->Nv = N;
    G->Ne = M;

    for(int i = 1; i <= G->Nv; i++)
    {
        for(int j = 1; j <= G->Nv; j++)
        {
            G->Data[i][j] = infinite;//初始化 设置为无穷大 方便没有链接的点表示距离
            
			if(i == j)
               G->Data[i][j] = 0; 
			      
        }
    }
    
    for(int k = 0; k < G->Ne; k++)
    {
        cin >> i >> j >> w;
        G->Data[i][j] = w;
        G->Data[j][i] = w;
    } 

}
//每次将其中的 最大值 返回
int dijkstra(PtrGraph G,int a,int vis[])
{
    int dist[101] = {0};
    int max = 0;
    vis[a] = 1;
    cnt++;
    
    for(int i = 1; i <= G->Nv; i++)
    {
        dist[i] = G->Data[a][i];
    }

    while(1)//将剩余的结点 进行多次求最小值;
    {   
        int m = -1;
		int min = infinite;
	
        for(int i = 1; i <= G->Nv; i++)
        {
            if(dist[i] < min && vis[i] != 1)
            {
                min = dist[i];
                m = i;
            }
        }

        if(m == -1)
            break;//证明已经没有最小的权值了 
    
        vis[m] = 1;//记录已经访问过的
        cnt++;//记录访问的结点个数
	
        for(int i = 1; i <= G->Nv; i++)
        {
            if( vis[i] != 1 && G->Data[m][i] + min < dist[i])
            {
                dist[i] = G->Data[m][i] + min;
            }
        }
    }

    for(int i = 1; i <= G->Nv; i++)
    {
    	//cout << dist[i] << ' ';
        if(dist[i] > max)
        {
            max = dist[i];
//            cout << dist[i] << ' ';
        }
    }

    return max;

}
int main()
{
    PtrGraph G;
    int flag = 0;
    vector<int>v;
    int min = 1000,array[101],k = 1;
    G = (PtrGraph)malloc(sizeof(struct Graph));
    creatGraph(G);

    int a = 1;
    v.push_back(a);//vector容器的下标 是从0开始 我们想要的是从1开始

    for(int i = 1; i <= G->Nv && flag ==0; i++)
    {
        cnt = 0;
        int visited[101] = {0};

        int temp = dijkstra(G,i,visited);
    
        array[k++] = temp;
        v.push_back(temp);//这里vector容器的下标 是从1开始
        if(cnt != N)
        {
            flag = 1;
        }

    }

    if( flag == 1)
        cout << "0" << endl;
    else
    {
        sort(v.begin()+1,v.end());

        for(int i = 1; i <= k; i++)
        {
            if(array[i] == v[1])
            {
                if( i < min )
                    min = i;
            }
        }

        cout << min << ' ' << v[1] << endl;

    }

}

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

天天向上的菜鸡杰!!

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值