7-11 租用游艇问题 (15 分)(思路+详解+一步步分析+网格解决动态规划问题)Come boy!!!!

一:题目

题目来源:王晓东,《算法设计与分析》

长江游艇俱乐部在长江上设置了n个游艇出租站1,2,…,n。游客可在这些游艇出租站租用游艇,并在下游的任何一个游艇出租站归还游艇。游艇出租站i到游艇出租站j之间的租金为r(i,j),1<=i<j<=n。试设计一个算法,计算出从游艇出租站1 到游艇出租站n所需的最少租金。

输入格式:
第1 行中有1 个正整数n(n<=200),表示有n个游艇出租站。接下来的第1到第n-1 行,第i行表示第i站到第i+1站,第i+2站, … , 第n站的租金。

输出格式:
输出从游艇出租站1 到游艇出租站n所需的最少租金。

输入样例:
在这里给出一组输入。例如:

3
5 15
7

结尾无空行
输出样例:
在这里给出相应的输出。例如:

12

二:思路

思路:本题的思路和矩阵链相乘思路一样,但递推方程不一样
1:首先判断是否用动态规划:从1到最后的站N,那么这个求解的过程是跳跃性的
可以从1到2 然后从2到 N,或则从1到3,从3到N,其是跳跃性的,判断其是动态规划

2:回归本题我们在考虑的时候,其中涉及到划分问题,比如从2到N,可以从2到3,然后从
3到N,那么的我们可以找类似的思路,那就是矩阵连相乘

3: 总结出递归方程:m[i][j] = m[i][k]+m[k][j] 这里和矩阵链相乘有区别
注意递推方程的区别:游艇:比如:从1到3,然后从3到N
矩阵链:比如从1到3,那么接下来就是4到N(A1A2A3A4A5)

三:来干了这杯代码

/*
	思路:本题的思路和矩阵链相乘思路一样,但递推方程不一样
		  1:首先判断是否用动态规划:从1到最后的站N,那么这个求解的过程是跳跃性的
		  	可以从1到2 然后从2到 N,或则从1到3,从3到N,其是跳跃性的,判断其是动态规划
			
		  2:回归本题我们在考虑的时候,其中涉及到划分问题,比如从2到N,可以从2到3,然后从
		  	 3到N,那么的我们可以找类似的思路,那就是矩阵连相乘
			
		  3: 总结出递归方程:m[i][j] = m[i][k]+m[k][j] 这里和矩阵链相乘有区别
		  
		  注意递推方程的区别:游艇:比如:从1到3,然后从3到N
		  					  矩阵链:比如从1到3,那么接下来就是4到N(A1*A2*A3*A4*A5)  
	
*/ 

#include<bits/stdc++.h>
using namespace std;

int main(){
	
	int m[300][300];//注意定义二维数组不可定义的范围过大  
	int N;	
	cin >> N;
	
//	int m[N+1][N+1];
	
	//二维数组初始化 自己到自己为0
	for(int i = 0; i <= N; i++){
		m[i][i] = 0;
	} 

	for(int i = 1; i <= N; i++){
		for(int j = i + 1; j <= N; j++){//这里的i+1 是 从 一个站到另一个站 
			cin >> m[i][j];
		}
	}
	
	//直接开始更新二维数组当中的值
	for(int i = N; i >= 1; i--){//
		for(int j = i + 1; j <= N; j++){
			
			//开始划分
			for(int k = i + 1; k < j; k++){
				
				int temp = m[i][k] + m[k][j];
				
				if(temp < m[i][j]){ //求取最小值 
					m[i][j] = temp;
				}	
			} 
		} 	
	} 
	
	cout << m[1][N]; 
	
	
}
//3
//5 15
//7


在这里插入图片描述
加油 陌生的赶路人!成功本就不易,我们怎能轻言放弃!!!!!!!!!!!!!!!!!!!

评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

天天向上的菜鸡杰!!

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值