1970-2022年全球0.1°温室气体栅格数据(附代码)

1. 数据说明

EDGARv8.0 是全球温室气体排放数据库的第二版,由欧洲共同研究中心(JRC)与国际能源署(IEA)合作开发,提供各国和各行业的温室气体排放估算数据。数据涵盖三种主要温室气体(CO2、CH4、N2O)以及氟化气体,并分为化石CO2和生物CO2两类。化石CO2排放包括来自化石燃料燃烧和工业过程的排放,而生物CO2排放则来源于生物燃料燃烧。数据主要基于IEA、FAO等组织的活动数据,同时结合科学文献和专家判断,涵盖了能源、农业等多个行业。数据坐标系:GCS_WGS_1984。空间分辨率:0.1°×0.1°(约11.1km×11.1km)。

2. 数据获取

官网:https://edgar.jrc.ec.europa.eu/dataset_ghg80#p2

 

文件的名称后缀为"_emi "代表该气体所有行业每年排放总量,以ton substance / 0.1degree x 0.1degree / year(吨/0.1°×0.1°/年)为单位。文件的名称后缀为" _flx"代表该气体的排放通量,以kg substance /m2 /s(千克/平方米/秒)为单位

3. 处理代码

以CO2为例。

数据多多年的nc数据,如果需要转为栅格,可以使用以下代码。

 

### 使用 LMDI 模型进行栅格数据分析的方法 对于空间分布的数据,如地理信息系统 (GIS) 中常见的栅格数据,LMDI 方法同样适用。这类分析通常用于评估不同地理位置上的环境或经济变量的变化及其驱动因素。 #### 数据准备 在处理栅格数据之前,需准备好所需的空间数据集。这些数据应覆盖相同的研究区域并具有相同的分辨率。例如,如果研究对象是中国某省的碳排放情况,则需要获取该省内各个网格单元的相关统计数据,包括但不限于人口密度、GDP 密度等可能影响碳排放的因素[^5]。 #### 计算流程 1. **读取栅格数据** 需要先加载所需的栅格图层到 MATLAB 或 Python 环境下。这可以通过调用特定库函数实现,比如 `rasterio` 和 `gdal` 是常用的 Python 库;而在 MATLAB 中则有专门命令来导入 GeoTIFF 文件或其他格式的地图图像。 2. **预处理** 对原始栅格数据执行必要的清理工作,如去除异常值、填补缺失值等操作,确保后续计算的有效性和准确性。此外还需考虑单位转换等问题,使所有输入参数保持一致以便于比较和解释结果。 3. **构建基础方程** 根据具体应用场景建立相应的数学表达式,这里以 Kaya 恒等式的拓展版本为例: \[ E_t = P_t * g_{t}^{a} * e_{t}^{b} \] 其中 \(E\) 表示总能耗,\(P\) 代表人口总数,而 \(g^a\) 及 \(e^b\) 分别指代 GDP 强度和技术效率两个关键要素。注意这里的上标表示幂次关系而非求导运算。 4. **实施 LMDI 分析** 接下来就是核心环节—利用对数平均迪氏指数算法完成实际数值层面的具体解析过程。考虑到栅格化特性带来的特殊性,在此阶段特别强调逐像元遍历机制的应用,即针对每一个独立的小方块分别施行同样的逻辑判断与量化估计动作直至整个地图范围全部扫描完毕为止。 5. **结果可视化** 完成上述步骤之后便可以获得一系列反映各因子贡献程度的新生成影像资料。借助 GIS 软件平台强大的图形展示功能,能够直观呈现各类效应随时间和地点演变的趋势特征,从而为进一步深入探讨提供有力支持。 ```python import numpy as np from rasterio import open as rio_open def load_raster(file_path): with rio_open(file_path) as src: array = src.read(1) profile = src.profile return array, profile population_grid, _ = load_raster('path/to/population.tif') gdp_intensity_grid, _ = load_raster('path/to/gdp_intensity.tif') energy_efficiency_grid, _ = load_raster('path/to/energy_efficiency.tif') # Assuming we have the initial and final year's data loaded into variables. initial_year_data = { 'population': population_grid_initial, 'gdp_intensity': gdp_intensity_grid_initial, 'energy_efficiency': energy_efficiency_grid_initial } final_year_data = { 'population': population_grid_final, 'gdp_intensity': gdp_intensity_grid_final, 'energy_efficiency': energy_efficiency_grid_final } def calculate_lmdi_changes(initial_values, final_values): """Calculate changes using LMDI method.""" delta_population = np.log(final_values['population']) - np.log(initial_values['population']) delta_gdp_intensity = np.log(final_values['gdp_intensity']) - np.log(initial_values['gdp_intensity']) delta_energy_efficiency = np.log(final_values['energy_efficiency']) - np.log(initial_values['energy_efficiency']) # Calculate contributions based on LMDI formula... return {'delta_population': delta_population, 'delta_gdp_intensity': delta_gdp_intensity, 'delta_energy_efficiency': delta_energy_efficiency} changes = calculate_lmdi_changes(initial_year_data, final_year_data) for key, value in changes.items(): print(f"{key}: {value.mean()}") ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值