- 博客(62)
- 收藏
- 关注
原创 Python 桑基图
桑基图通过使用有向箭头连接不同的节点来显示流动的路径和量级,用于可视化流量、能量、资源或数量的流动。桑基图主要有节点和箭头两个基本要素。节点:桑基图由一系列节点组成,每个节点代表一个特定的实体或类别。例如,节点可以代表不同的产品、部门、地区等。箭头:箭头表示流动的路径,从一个节点流向另一个节点。箭头的宽度通常表示流量或数量的大小。宽度越大,表示流量或数量越大。此外,桑基图可以使用颜色来表示不同的节点或流动路径,以帮助用户更好地理解和区分不同的实体或类别。
2025-03-26 15:40:22
349
原创 Matplotlib Colormaps
colormap (色带),顾名思义,是的。colormap 将一系列颜色按给定的顺序排列在一起。我们可以通过某种映射关系,将一系列数值映射到一张 colormap 上去,使。Matplotlib 有一些内置的色带,也支持外部的第三方色带。根据颜色的变化方式,可以将色带分成Sequential、Diverging、Cyclic、Qualitative等类型。
2024-12-10 16:11:49
1119
原创 matplotlib 3D图 网格线样式修改
可以通过访问 Axes3D 中的 ax.xaxis._axinfo['grid'], ax.yaxis._axinfo['grid'], ax.zaxis._axinfo['grid'] 属性来设置网格线的线型。在 matplotlib 的 3D 图中,默认的网格线由面板边框生成,而不是单独的网格线设置,因此直接使用 axs.grid(linestyle='--') 对 3D 图形的网格无效。要修改 3D 图中格子线的样式,需要手动。
2024-09-10 20:14:04
462
原创 Linux内存管理——Swap
一个磁盘区域,作为内存使用。当系统内存不足时,会将一些很久不使用的数据转移到swap space中。优点:扩展了内存空间缺点:用磁盘做内存,读写效率降低。
2024-05-09 17:31:43
549
原创 解决Linux环境下gdal报错:ERROR 4: `/xxx.hdf‘ not recognized as a supported file format.
题外话:我发现linux系统和Windows系统下面,库的版本是有差异的。比如我的本机Windows上装的是gdal3.2.3和numpy1.19.1,linux服务器上装的却是gdal3.0.2和numpy1.21.5。这个是很常见的回复,网上许多回答都说低版本的 gdal 不支持 hdf5,让你重装高版本的gdal。我之前用pip安装了whl,暴力装上了,但用的时候就会有问题。安装了不冲突的gdal之后,就成功打开文件啦~一开始我是抱着试试的心态,用conda,不用pip,重新安装了一下我的gdal。
2024-01-30 11:28:51
1324
原创 python netCDF4
NetCDF 即 network Common Data Form(网络通用数据格式),是一种面向数组型并适于网络共享的数据的描述和编码标准。文件的后缀是。nc 在气象领域应用很广,因为它可以存储不同波段的长时间观测结果。NetCDF 文件中的数据以数组形式存储。例如,某个位置处随时间变化的温度以一维数组的形式存储。某个区域内在指定时间的温度以二维数组的形式存储。来源:【知乎netCDF4 是一个专门处理 nc数据的 python库。
2024-01-12 17:07:57
3053
原创 欧空局温室气体数据集 简介及下载
欧空局的温室气体数据是 GHG-CCI+ 项目的卫星衍生产品。GHG-CCI 中的 GHG 指 GreenHouse Gases,温室气体;CCI 指的是 ESA Climate Change Initiative,欧空局气候变化倡议。
2024-01-11 16:42:32
1657
原创 欧盟全球大气排放数据库(EDGAR)
(2) 运输业(航空、公路、海运)Aviation climbing&descent、Aviation cruise、Aviation landing&takeoff、Aviation supersonic、Road transportation、Railways, pipelines, off-road transport、Shipping、(9) 垃圾处理:Solid waste landfills、Solid waste incineration、Waste water handling、
2024-01-10 20:58:14
9587
8
原创 MODIS ET 蒸散发数据
MODIS ET 即系列产品,属于MODIS的产品。,也就是结尾是.061的数据集。在 Collection 6.1 中,MOD16主要有 2 种数据集:①合成产品 MOD16合成产品 MOD16/MOD16A3GF。现在这两种数据集都以科学数据文件的格式存储储存。HDFEOS2是HDF4的一种扩展,在原有的基础上添加了地理参考、地图投影等其他关键元数据信息。产品名称中的,采用Mu et al., 2011的方法,使用。
2024-01-02 04:10:16
3659
2
原创 Sentinel-2 命名规则(Naming Convention)
比如下面这个例子:第一次生产的时候,左下角缺了一块,所以估计后面第二次生产是为了补全之前的缺失。下述命名规则是2019年12月6日颁布的,自此之后的L1C级别产品都按照这个规则命名(其他级别的产品官网没说)。Product Discriminator:15个字符,用于区分从相同数据中衍生出的不同的最终用户产品。个人理解是这串字符应该是表示产品生产时间,至于为啥同一个数据要多次生产,原因很多,官网也没法总结。下载下来的文件是个zip,解压后是个与zip同名的 '.SAFE' 文件。
2023-10-13 15:24:40
802
原创 Python OGR 矢量操作
矢量数据的读取顺序:文件(datasource) → 图层(layer) → 特征(feature)、字段(field)
2023-08-22 21:32:07
568
原创 2021 RSE《A systematic method for spatio-temporal phenology estimation of paddy rice》
广东、Sentinel-1 预处理、水稻提取、移栽期识别
2023-05-23 15:53:14
388
1
原创 MOD09A1、MYD09A1 文件说明
文件全称为 MODIS Terra/Aqua Surface ReflectanceL3 Global。文件名称的示例为 “MOD09A1.A2000337.h11v05.005.2006342055602.hdf”。下载下来的 hdf 包括个子数据集,一个 tile 包括 2400*2400 个像元。各数据集的性质如下表所示。Science Data Sets (13 个 hdf 层)0.000116位 有符号整数(度)
2023-05-08 16:22:54
5728
原创 记录踩的坑:python gdal 重采样+坐标系转换
源数据:1/0 二值数据,30m 分辨率,WGS_1984_UTM_Zone_53N 坐标系,东北区域。目标:将源数据制成与 MODIS tile 的坐标系(Sinusoidal)、分辨率(463.3127165m)都一致的tif。。
2023-04-19 21:55:50
1235
原创 2020 RSE《Mapping cropping intensity in China using time series Landsat & Sentinel-2 images and GEE》
作物密度。融合 Landsat 和 Sentinel-2 数据。
2023-04-14 17:47:34
785
1
原创 2021 RSE《An automated rice mapping method based on flooding signals in SAR time series》
中国饥饿问题仍在,水稻是中国最重要的粮食作物。洪水特征导致水消费、温室气体排放。近十年遥感在农业监测上的进步巨大。两种主要的遥感数据源:微波和光学。光学易受天气影响。SAR优势。Sentinel。基于SAR进行水稻制图的研究。常用方法:基于阈值的决策树。以往方法的缺陷:① 使用整个水稻生长季的特征,可能会稀释水稻特殊的洪水信号。② 迁移性较差。③ 语义分割的缺点。本文所提出的方法的目标:① 在作物系统和土地类型不同的区域,达到相对较高的精度。② 该方法在一定程度上能够抵抗SAR数据噪声的影响。
2023-04-13 23:37:20
459
原创 pyModis —— 下载、处理、分析 MODIS 的 python库
pyModis 的 module 包括:downmodisClasses。
2023-04-10 00:10:31
1009
原创 dtw-package(使用R语言应用DTW)
dtw-package 是 R语言对动态时间规整(DTW)算法的封装。DTW 计算了将 一个时序(query) 与 另一个时序(reference)的整个或部分序列 进行匹配时 时间轴上的扭曲。该算法会输出:① 两个序列经过匹配后的剩余累积距离(remaining、② 点与点之间的对应关系,即 匹配函数(在 dtw-package 中:dtw() 函数是整个包的主要入口,dtwDist() 用于在一个时序集合上迭代 dtw,plot.dtw() 是 DTW 对象的绘图方法;
2023-04-07 15:58:35
1218
原创 MODIS Surface Reflectance products(表面反射率产品)
Product Granule ID 例子:MOD09.A2011026.0035.005.2011027195038.hdf。
2023-04-06 22:35:31
11379
原创 MODIS 及其 数据、产品
MODIS 是美国宇航局研制的一种大型空间,全称为 MoDerate Resolution Imaging Spectroradiometer。它搭载在两颗卫星上:Terra(EOS AM-1)和 Aqua(EOS PM-1)。
2023-04-06 12:11:40
4960
1
原创 2023 RS《Optimization of Characteristic Phenological Periods for Winter Wheat Extraction Using RS》
及时、精确地获取冬小麦种植区域的重要性。遥感是一种主要手段。应用广泛的作物种植信息:光谱特征、时间特征、空间特征。大多机器学习方法只使用单幅影像,有局限。冬小麦与其他不过冬的作物相比,时序变化更加明显。简介 DTW。研究区域的重要性。现有研究的不足。
2023-04-03 22:39:03
149
原创 2022 RS《Wetland Vegetation Classification through Multi-Dimensional Feature Time Series Using MDDTW》
基于 Mahalanobis distance 的 metric learning 的目的是:给定一个训练样本及 X,获取一个正半定对称矩阵(positive semi-definite symmetric matrix) M,从而建立样本的特征向量之间的关系。这样的话,训练样本之间的相似关系会被保留,相同样本的距离更近,不同类型的距离很远。对于本实验构建的多维特征时序,如果使用欧氏距离,每个特征(植被指数)的权重相同,且会忽略特征之间的关系。原本的 DTW 中,在计算两个点之间的距离时,使用欧氏距离。
2023-04-03 21:37:34
321
原创 2022 ISPRS《Effects of Landsat image acquisition date on winter wheat classification in North China》
多时相遥感影像的合成数据,可用于在区域和全球尺度上进行农作物用地制图。MODIS 数据时间分辨率高,在农作物制图中应用广泛;但它空间分辨率低。空间分辨率更高的 Landsat 5、Landsat 7 等数据,由于数据缺失或 SLC-off gaps 等问题,无法获取完整的观测数据。Landsat 8 时间分辨率为16天。在生长期内通常可用。已经成功用于一系列区域制图。时间序列延长,分类精度不会按比例提高。其会引发过拟合问题。因此,很有必要探索获取日期(时序长度)对分类精度的影响。
2023-04-03 16:41:58
169
原创 2021 RS《Comparison of Winter Wheat Mapping from Different Similarity Measurement》
现存困难:传统的表格式不能反映空间分布。遥感数据与地面采样数据的结合可能存在不一致的问题。需要发展遥感制图技术,以保证遥感获取的分布信息与统计数据的面积信息之间高度一致。基于进行作物面积空间化和作物分布提取的缺陷。为了提高精度,需要强化基于遥感时间序列数据的作物分布提取技术。
2023-04-03 11:48:48
203
1
原创 1997《CCSM: cross correlogram spectral matching》
交叉相关图:计算每个像元的光谱在不同波段上,测试光谱与参考光谱之间的相关性。
2023-04-02 21:28:37
394
1
原创 2020 RS《Mapping Winter Wheat in North China Using Sentinel 2 Based on Phenology-Time Weighted DTW》
增大 2 个重要时段的权重、减小其他时段的影响。重要时段指:冬季之前上升、heading 之后下降。
2023-03-31 14:15:50
687
原创 2019 RS《Object-Based Time-Constrained Dynamic TimeWarping Classification of Crops Using Sentinel-2》
比较了 应用了15、30、45、60 天的时间限制后,multiple single-band 和 multi-band的 DTW 的分类表现。首先将影像分割成 objects,然后对每个 object 利用 DTW 进行分类。
2023-03-30 17:21:16
219
原创 2019年《A time-series classification approach based on change detection for rapid land cover mapping》
先利用 Prophet 判断时序的断点,再利用 DTW 对子时序进行分类。
2023-03-30 15:58:10
519
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人