题目描述
图片描述
上图给出了一个数字三角形。从三角形的顶部到底部有很多条不同的路径。对于每条路径,把路径上面的数加起来可以得到一个和,你的任务就是找到最大的和。
路径上的每一步只能从一个数走到下一层和它最近的左边的那个数或者右 边的那个数。此外,向左下走的次数与向右下走的次数相差不能超过 1。
输入描述
输入的第一行包含一个整数 N\ (1 \leq N \leq 100)N (1≤N≤100),表示三角形的行数。
下面的 NN 行给出数字三角形。数字三角形上的数都是 0 至 100 之间的整数。
输出描述
输出一个整数,表示答案。
解题思路
本题动态规划最主要的有一个问题就是要往左和往右走的步数之差不能大于1,因此这就不是让我们单纯的考虑它的最大路径的问题了,但是这个条件也给我们了一点好处可以确定最终答案的位置,因为往左和往右的步数不能大于1,那么要是步数为奇数的时候答案应该在dp数组最后一行的最中间的位置,如果步数为偶数,那么答案应该在dp数组最后一行的中间两个的最大的那个值。但是注意这题我们要从上面算下来以满足步数这一限制条件
public static void main(String[] args) {
Scanner scan = new Scanner(System.in);
//原始数组
int arr[][] = new int[101][101];
//dp数组
int answer[][] = new int[101][101];
int n;
//读入数组
n = scan.nextInt();
for(int i = 1;i <= n;i++) {
for(int j = 1;j <= i;j++) {
arr[i][j] = scan.nextInt();
}
}
//先将全部往左走的路线计算出来
answer[1][1] = arr[1][1];
for(int i = 2;i <= n;i++) {
answer[i][1] = answer[i-1][1] + arr[i][1];
}
//依次往下将左上和右上中最大的那个作为他要走的步骤
for(int i = 2;i <= n;i++) {
for(int j = 2;j <= i;j++) {
answer[i][j] = arr[i][j] + Math.max(answer[i-1][j],answer[i-1][j-1]);
}
}
//如果有偶数行那么就应该是中间两个里最大的
if(n % 2 == 0)
System.out.println(Math.max(answer[n][n/2],answer[n][n/2+1]));
else
System.out.println(answer[n][n/2+1]);
}
题目变式:
如果题目中没有步数要求,只要求求出最大的,那么我们应该从最下面开始算,因为从上面算下来很复杂,但是从下面就可以很轻松,我们将比较目标位置的左下和右下位置计算出的值,然后将最大值价目值得到的值在赋值给目标值得位置
public static void main(String[] args) {
Scanner scanner = new Scanner(System.in);
//原始数组
int arr[][] = new int[101][101];
//dp数组
int answer[][] = new int[101][101];
int n;
//读入数组
n = scanner.nextInt();
for(int i = 1;i <= n;i++) {
for(int j = 1;j <= i;j++) {
arr[i][j] = scanner.nextInt();
//相当于dp数组的初始化
if(i == n)
answer[i][j] = arr[i][j];
}
}
for(int i = n-1;i > 0;i--) {
for(int j = 1;j <= i;j++) {
//将本位置的和左下右下中最大的进行相加
answer[i][j] = arr[i][j] + Math.max(answer[i+1][j],answer[i+1][j+1]);
}
}
System.out.println(answer[1][1]);
}