Pytorch_geometric
文章平均质量分 97
Coconut Shao
SCI一百篇!!!!
展开
-
利用PyG实现图池化minCUT Pool(图分类任务)
(内含minCUT Pool代码实现)《Spectral Clustering with Graph Neural Networks for Graph Pooling》作者在本文中提出了一种可以在样本外的图上快速评估的聚类函数。根据所提出的聚类方法,作者设计了一个图池算子minCUT,并在有监督和无监督任务上都取得了极佳的性能。通俗来讲,作者提出的基于GNN的实现是可微分的,不需要计算频谱分解,并且学习了一个可以在样本外图上快速评估的聚类函数。原创 2022-10-22 12:35:42 · 4239 阅读 · 1 评论 -
利用PyG实现端到端的链路预测+社区检测(组合优化)
本文主要是对以链路预测和社区检测作为代表的学习+优化组合的任务进行实现。在下文实现的代码中,我们的目的是,通过只知道的40%的边来预测出完整的图(链路预测)并进行优化任务(社区检测)。在实际问题中,两个问题往往是结合在一起的。比如,我们往往会对输入先进行链路预测,然后再对预测完复原的图进行社区检测的任务。这种分两阶段的方法模型一方面会大大提高实现的复杂性,同时无法保证链路预测对社区检测的目标(分别代表学习和优化两个任务)是否起到有效帮助。原创 2022-10-20 21:03:42 · 2944 阅读 · 0 评论 -
利用PyG实现社区检测经典算法ClusterNet
2019年《End to end learning and optimization on graph》在之前的传统方法中,往往是先对对图的学习问题进行解决,再进行优化。在实际应用中,图的学习和优化问题常常是结合在一起,比如图或相关属性往往只是部分观察到,引入了一些学习问题,如链接预测,必须在优化之前解决。文章作者提出了一种端到端的方法,将学习问题和优化问题结合到了一起,**将优化问题作为学习任务的一层,运用下游的优化误差反过来传递到学习的任务上,这允许模型特别关注下游任务,它的预测将用于该任务。原创 2022-10-17 16:13:06 · 2938 阅读 · 4 评论