一、利用多种神经网络对同一个文本数据集进行情感分析,通过对文本积极性和消极性识别的准确率的大小来判别哪一种神经网络更适合对文本进行情感分析。而可视化显示的方法可以用TensorBoard来显示,因为我们进行情感分析的两种网络是以TensorFlow为基础进行的。但是TensorBoard可视化显示并不能准确的展现出哪一种网络更适合文本情感分析。
二、例如:CNN网络中的LeNet-5网络虽然最初的结构对于文本进行情感分析时准确率只有71%左右,但是通过不断增加卷积层和池化层可以使得准确率不断提高,因此在程序执行的某个阶段准确率可能高于另一个网络识别的准确率,之后又会低于另一个网络识别的准确率,因此TensorBoard可视化显示并不能很准确的说明哪一种网络更适合文本情感分析。
三、在做让机器进行不同程度学习的相关的探讨中,当一个模型被自己准备好的训练集训练好过后,这个时候会对训练好的模型进行检测,就是用自己准备好的测试集来对训练好的模型进行检测。有特别多对网络模型好坏的评价指标,ROC曲线作为一种比较常用的指标,它以不同阙值为前提,它是一个二维坐标图,以tpr为纵坐标,以fpr为横坐标构成。当使用测试集去测试模型的好坏时,它输出的将会是一个矩阵,混淆矩阵还有另一个称呼,它也被人称之为误差矩阵,它是用来对精度进行评价反映的一种形式,它具有n行和n列,在文本分类中可以通过混淆矩阵来将分类结果的比较和实测值展示出来,混淆矩阵可以把分类结果的精确度都可视化展示出来,这次文本情感分析实则是对情感极性进行分类,分类标准有积极和消极两种,由真实值和预测值形成的混淆矩阵。这次情感分类所用的矩阵属于二分类。具体就是将矩阵的纵轴表示真实值,横轴表示预测值,两个坐标轴分别有积极和消极两种代表1和0。以此来建立混淆矩阵。
四、由CNN网络进行文本情感分析得出的混淆矩阵如下。
由LSTM网络进行文本情感分析得出的混淆矩阵如下。
由混淆矩阵可以得出LSTM网络进行文本情感分析的准确率要高于CNN网络进行文本情感分析的准确率。故而LSTM网络相比较更加适合文本穷鬼分析。
用混淆矩阵来对情感分析进行对比
最新推荐文章于 2023-10-25 00:04:20 发布