目录
1. 什么是提示词?
提示词(Prompt)是与AI模型交互的核心指令,通过自然语言描述任务目标、约束条件和期望输出格式。在LLM(大语言模型)如GPT-4、Claude的应用中,提示词质量直接决定输出结果的有效性。
1.1 提示词的应用场景
- 内容生成:文章/代码创作、故事续写
- 信息提取:情感分析、关键词抽取
- 复杂推理:数学解题、逻辑推理链(Chain-of-Thought)
- 系统指令:角色设定、响应风格控制
2. 提示词的核心原则
2.1 明确性优先原则
- ❌ 差示例:“写点科技相关的内容”
- ✅ 好示例:“用通俗易懂的语言,向中学生讲解区块链技术的三大核心特征,要求每部分配一个现实案例”
2.2 上下文构建
# 角色设定模板
prompt = """
您是一位有10年经验的网络安全专家,需要用非技术语言向企业高管解释:
1. 勒索软件攻击的典型传播路径
2. 3条可立即实施的防御措施
3. 应急响应流程图(用Markdown格式)
"""
2.3 结构化输出控制
请生成5个物联网(IoT)领域的技术博客标题,要求:
- 包含「智能城市」关键词
- 使用「解密」「实践指南」「前沿」等增强词
- 格式:
- [标题1]
- [标题2]
…
2.4 逆向约束
通过负面提示排除不需要的内容:
"请避免使用专业术语、不要给出未经验证的医疗建议、无需解释基础生物学概念"
3. 典型案例分析
场景 | 基础提示 | 优化提示(加入角色+结构化) |
---|---|---|
烹饪指导 | “教我做个菜” | “作为米其林主厨,推荐3道适合家庭制作的创意菜谱,需包含:食材替代建议、关键烹饪时间控制技巧和摆盘示意图描述” |
代码调试 | “为什么我的Python报错?” | “假设您是有15年代码审查经验的专家,请用对比表格分析以下代码在Python 3.8与3.11环境下的兼容性问题,指出具体行号并提供两种解决方案” |
4. 高阶优化策略
4.1 迭代调参技巧
- Temperature调整:
temperature=0.2(确定性高) vs temperature=0.8(创造性高) - Few-shot Learning:
示例1:[输入]2023诺贝尔物理学奖得主 → [输出]皮埃尔·阿戈斯蒂尼…
示例2:[输入]2022图灵奖获得者 → [输出]罗伯特·梅特卡夫…
请根据模式回答:[输入]2021奥运会举办城市 → [输出]
4.2 多视角提示
请用三个不同身份分析同一事件:
- 医生视角:疫苗有效性数据解读
- 统计学家视角:样本有效性说明
- 新闻记者视角:公众沟通话术建议
5. 工具与资源
1,Prompt IDE:
- OpenAI Playground:实时调试参数
- PromptBase:优质提示词市场
2,评估指标: - BLEU Score(语义相似度)
- ROUGE(关键信息覆盖率)
6. 未来展望
1,模型对隐含意图的理解提升
2,个性化提示词库的自动生成
3,多模态提示词(图文混合指令)
提示词工程是AI时代的「炼金术」,通过持续实践建立系统的优化方法论,才能充分发挥大模型潜能。