springboot集成kafka记录

1、编写docker-compose-kafka.yml

version: '2'
services:
  zookepper:
    image: wurstmeister/zookeeper                    # 原镜像`wurstmeister/zookeeper`
    container_name: zookeeper_server                 # 容器名为'zookeeper_server'
    restart: always                                  # 指定容器退出后的重启策略为始终重启
    volumes:                                         # 数据卷挂载路径设置,将本机目录映射到容器目录
      - "/etc/localtime:/etc/localtime"
    ports:                                           # 映射端口
      - "2181:2181"

  kafka:
    image: wurstmeister/kafka                                # 原镜像`wurstmeister/kafka`
    container_name: kafka_server                             # 容器名为'kafka_server'
    restart: always                                          # 指定容器退出后的重启策略为始终重启
    volumes:                                                 # 数据卷挂载路径设置,将本机目录映射到容器目录
      - "/etc/localtime:/etc/localtime"
    environment:                        # 设置环境变量,相当于docker run命令中的-e
      KAFKA_ADVERTISED_HOST_NAME: 你的ip  # TODO 本机IP
      KAFKA_ADVERTISED_PORT: 9092                      # 端口
      KAFKA_BROKER_ID: 0                # 在kafka集群中,每个kafka都有一个BROKER_ID来区分自己
      KAFKA_ADVERTISED_LISTENERS: PLAINTEXT://你的ip:9092 # TODO 将kafka的地址端口注册给zookeeper
      KAFKA_LISTENERS: PLAINTEXT://0.0.0.0:9092        # 配置kafka的监听端口
      KAFKA_ZOOKEEPER_CONNECT: 你的ip:2181 # TODO zookeeper地址
      KAFKA_CREATE_TOPICS: "hello_world"
    ports:                              # 映射端口
      - "9092:9092"
    depends_on:                         # 解决容器依赖启动先后问题
      - zookepper
# kafka可视化界面
  kafka-manager:
    image: sheepkiller/kafka-manager                         # 原镜像`sheepkiller/kafka-manager`
    container_name: kafka-manager                            # 容器名为'kafka-manager'
    restart: always                                          # 指定容器退出后的重启策略为始终重启
    environment:                        # 设置环境变量,相当于docker run命令中的-e
      ZK_HOSTS: 你的ip:2181  # TODO zookeeper地址
      APPLICATION_SECRET: hmb
      KAFKA_MANAGER_AUTH_ENABLED: "true"  # 开启kafka-manager权限校验
      KAFKA_MANAGER_USERNAME: admin       # 登陆账户
      KAFKA_MANAGER_PASSWORD: 123456      # 登陆密码
    ports:                              # 映射端口
      - "9000:9000"
    depends_on:                         # 解决容器依赖启动先后问题
      - kafka

运行docker-compose命令

docker-compose -f docker-compose-kafka.yml -p kafka up -d

2、kafka-manager(kafka集群管理工具)

访问ip:9000,添加集群
在这里插入图片描述

集成springboot

依赖

    <dependency>
        <groupId>org.springframework.kafka</groupId>
        <artifactId>spring-kafka</artifactId>
    </dependency>

yml


spring:
  # ======================== ↓↓↓↓↓↓ kafka相关配置 ↓↓↓↓↓↓ ===============================
  kafka:
    bootstrap-servers: ip:9092 # 指定kafka server地址,集群(多个逗号分隔)
    producer:
      # 指定消息key和消息体的编解码方式
      key-serializer: org.apache.kafka.common.serialization.StringSerializer
      value-serializer: org.apache.kafka.common.serialization.StringSerializer
      # 写入失败时,重试次数。当leader节点失效,一个repli节点会替代成为leader节点,此时可能出现写入失败,
      # 当retris为0时,produce不会重复。retirs重发,此时repli节点完全成为leader节点,不会产生消息丢失。
      retries: 0
      # 每次批量发送消息的数量,produce积累到一定数据,一次发送
      batch-size: 16384
      # produce积累数据一次发送,缓存大小达到buffer.memory就发送数据
      buffer-memory: 33554432
    consumer:
      group-id: default_consumer_group # 指定默认消费者 群组ID
      enable-auto-commit: true  # true自动提交
      auto-commit-interval: 1000
      # procedure要求leader在考虑完成请求之前收到的确认数,用于控制发送记录在服务端的持久化,其值可以为如下:
      # acks = 0 如果设置为零,则生产者将不会等待来自服务器的任何确认,该记录将立即添加到套接字缓冲区并视为已发送。在这种情况下,无法保证服务器已收到记录,并且重试配置将不会生效(因为客户端通常不会知道任何故障),为每条记录返回的偏移量始终设置为-1。
      # acks = 1 这意味着leader会将记录写入其本地日志,但无需等待所有副本服务器的完全确认即可做出回应,在这种情况下,如果leader在确认记录后立即失败,但在将数据复制到所有的副本服务器之前,则记录将会丢失。
      # acks = all 这意味着leader将等待完整的同步副本集以确认记录,这保证了只要至少一个同步副本服务器仍然存活,记录就不会丢失,这是最强有力的保证,这相当于acks = -1的设置。
      # 可以设置的值为:all, -1, 0, 1
      acks: 1
      # 指定消息key和消息体的编解码方式
      key-deserializer: org.apache.kafka.common.serialization.StringDeserializer
      value-deserializer: org.apache.kafka.common.serialization.StringDeserializer
server:
  port: 8888
生产者
	@Autowired
	private KafkaTemplate template;

	@GetMapping("/send")
	public void send(String msg){
		template.send("hello", msg);
	}
	
	
	// ==kafkaTemplate提供了一个回调方法addCallback,我们可以在回调方法中监控消息是否发送成功 或 失败时做补偿处理===
	@GetMapping("/send/callbackOne}") // 第一种方法
	public void sendMessage2( String callbackMessage) {
	    kafkaTemplate.send("topic1", callbackMessage).addCallback(success -> {
	        // 消息发送到的topic
	        String topic = success.getRecordMetadata().topic();
	        // 消息发送到的分区
	        int partition = success.getRecordMetadata().partition();
	        // 消息在分区内的offset
	        long offset = success.getRecordMetadata().offset();
	        System.out.println("发送消息成功:" + topic + "-" + partition + "-" + offset);
	    }, failure -> {
	        System.out.println("发送消息失败:" + failure.getMessage());
	    });
	}
	@GetMapping("/kafka/callbackTwo") // 第二种方法
	public void sendMessage3( String callbackMessage) {
	    kafkaTemplate.send("topic1", callbackMessage).addCallback(new ListenableFutureCallback<SendResult<String, Object>>() {
	        @Override
	        public void onFailure(Throwable ex) {
	            System.out.println("发送消息失败:"+ex.getMessage());
	        }
	 
	        @Override
	        public void onSuccess(SendResult<String, Object> result) {
	            System.out.println("发送消息成功:" + result.getRecordMetadata().topic() + "-"
	                    + result.getRecordMetadata().partition() + "-" + result.getRecordMetadata().offset());
	        }
	    });
	}
	
消费者
@Slf4j
@Component  // 这个要记得加
public class Clu {
	// 消费监听 自动提交
	@KafkaListener(topics = "hello")
	public void listen(ConsumerRecord<?, ?> record) {
		log.info("topic: " + record.topic() + " <|============|> 消息内容:" + record.value());
		System.out.println("topic: " + record.topic() + " <|============|> 消息内容:" + record.value());
	}


	// 消费监听  手动提交方式,需改配置为手动模式  enable-auto-commit: false
	@KafkaListener(topics = "hello")
	public void listen(ConsumerRecord<?, ?> record,Acknowledgment ack) {
		log.info("topic: " + record.topic() + " <|============|> 消息内容:" + record.value());
		System.out.println("topic: " + record.topic() + " <|============|> 消息内容:" + record.value());
		//手动提交offset
 	    ack.acknowledge();
	}

	/**
	 * @Title 指定topic、partition、offset消费
	 * @Description 同时监听topic1和topic2,监听topic1的0号分区、topic2的 "0号和1号" 分区,指向1号分区的offset初始值为8
	 * @Author long.yuan
	 * @Date 2020/3/22 13:38
	 * @Param [record]
	 * @return void
	 **/
	@KafkaListener(id = "consumer1",groupId = "felix-group",topicPartitions = {
	        @TopicPartition(topic = "topic1", partitions = { "0" }),
	        @TopicPartition(topic = "topic2", partitions = "0", partitionOffsets = @PartitionOffset(partition = "1", initialOffset = "8"))
	})
	public void onMessage2(ConsumerRecord<?, ?> record) {
	    System.out.println("topic:"+record.topic()+"|partition:"+record.partition()+"|offset:"+record.offset()+"|value:"+record.value());
	}

}


调用接口
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值