数字信号处理 试题 复盘解答(一)
ps:仅 用作复盘 和回顾知识点,如果有疑问或者错误请提出。
涉及年份 :11 -16 年
2011 年
解答
- (1) ① 线性 满足 aT[x1(t)] + bT[x2(t)] = T[ax1(t) + bx2(t)]
② 时不变性 y(n-nd) = T[x(n-nd)]
③ 非因果性,当 n = 0时,输出与未来时刻的值有关。
④ 稳定 绝对可和
(2) ① 非线性 不满足 aT[x1(t)] + bT[x2(t)] = T[ax1(t) + bx2(t)]
疑似 非线性 的 常见 信号 类型
不满足可加性:
- 存在常数或者冲激,
- 存在绝对值或者三角函数
不满足齐次性
- 存在 y2(n) 或者 f(n)f(n-1)
② 时变性 不满足 y(n-nd) = T[x(n-nd)]
疑似时变性的 常见 信号 类型
- 反转
- 存在变系数
③ 非因果性,当 n = 0时,输出与未来时刻的值有关;或者 存在 反转
④ 稳定 绝对可和
-
H ( z ) = 0.19 ( 1 − 0.9 z ) ( 0.9 − z ) H(z) = \frac{0.19}{(1-0.9z)(0.9-z)} H(z)=(1−0.9z)(0.9−z)0.19,根据 收敛域不同可以分为三种情况
- 10 9 \frac {10} 9 910 > |z| > 9 10 \frac {9} {10} 109
- 10 9 \frac {10} 9 910 < |z|
- |z| < 9 10 \frac {9} {10} 109
注意
- an u(-n-1) ----> z z − a \frac z {z-a} z−az -
按谁抽取谁倒序
-
快速求IDFT[X(k)] :将可以 分为 两组,组成 Xe(k) 和 Xo(k) 分别做 IDFT,然后对应相加,得到原序列
-
- 不进位乘法,线性卷积的结果u(n) = {1,3,3,3,2}
- 截取四位,然后并入截余序列,得到 循环卷积的结果是 {1,3,3,5}
- 当 N ≥ L + M - 1 , 其中 L,M为 两序列长度,线性卷积等于循环卷积。
解答
-
证明思路
-
套入定义式,采取两次共轭
-
利用帕斯瓦尔定理
∑ ∣ x ( n ) ∣ 2 \sum |x(n)|^2 ∑∣x(n)∣2 = 1 N ∑ ∣ X ( k ) ∣ 2 \frac 1N \sum |X(k)|^2 N1∑∣X(k)∣2
-
-
- IZT
- H ( e j w ) = H ( z ) ∣ z = e j w H(e^{jw}) =H(z)|_{z = e^{jw}} H(ejw)=H(z)∣z=ejw,化简技巧 可以提出 e-2jw,化简得到 幅频和相频
- 利用梅森公式画图,梳状FIR滤波器
-
-
H ( z ) = H ( s ) ∣ s = 2 T z − 1 z + 1 H(z) = H(s)|_{s = \frac{2}{T} \frac{z-1}{z+1}} H(z)=H(s)∣s=T2z+1z−1
-
IIR 直接Ⅱ型
-
3dB 数字截止频率 Ωc = 0.5 rad/s wc = ΩcT
-
-
矩形窗设计,即低通滤波器的设计过程
- 确定滤波器规格: 确定所需的通频带范围、阻止带范围、过渡带宽等规格参数。
- 选择滤波器类型: 根据系统要求和性能需求,选择合适的数字低通滤波器类型,比如FIR滤波器或IIR滤波器。
- 设计滤波器:
- FIR滤波器设计:选取合适的窗函数(如Hamming窗、Blackman窗等)和滤波器长度,然后通过频率采样点方法进行设计。
- IIR滤波器设计:选择适当的原型滤波器(如Butterworth、Chebyshev等),然后通过频率变换法进行设计。
- 滤波器参数优化: 对于IIR滤波器,可以进行零极点分布的调整,以满足规格要求。
- 验证和分析: 使用仿真工具验证所设计的滤波器在频域和时域的性能,如幅度响应、相位特性、群时延等。
- 实现滤波器: 将设计好的数字低通滤波器转化为差分方程(对于IIR滤波器)或者直接使用其系数值(对于FIR滤波器),并在实际系统中应用。
如果数字低通滤波器的过渡带过宽,可以考虑采取以下措施:
- 增加滤波器阶数: 增加滤波器的阶数可以使得过渡带更为陡峭,从而减小过渡带宽度。
- 调整窗函数类型: 不同的窗函数对过渡带宽度有不同的影响,可以尝试使用具有更好频率特性的窗口函数来改善过渡带宽度。
如果过渡带过宽未能得到合适的调整,可能会导致以下结果:
- 频率混叠: 过宽的过渡带可能导致信号的高频成分无法被滤除而混叠到通频带内,造成滤波器性能下降和频谱失真。
- 无法满足规格要求: 若过渡带过宽,可能无法满足指定的通频带和阻止带要求,导致滤波器无法达到设计要求。
写在最后
日拱一卒,功不唐捐。