如何得到一个数据流中的中位数?如果从数据流中读出奇数个数值,那么中位数就是所有数值排序之后位于中间的数值。如果从数据流中读出偶数个数值,那么中位数就是所有数值排序之后中间两个数的平均值。
例如,
[2,3,4] 的中位数是 3
[2,3] 的中位数是 (2 + 3) / 2 = 2.5
设计一个支持以下两种操作的数据结构:
- void addNum(int num) - 从数据流中添加一个整数到数据结构中。
- double findMedian() - 返回目前所有元素的中位数。
示例 1:
输入:
["MedianFinder","addNum","addNum","findMedian","addNum","findMedian"]
[[],[1],[2],[],[3],[]]
输出:[null,null,null,1.50000,null,2.00000]
示例 2:
输入:
["MedianFinder","addNum","findMedian","addNum","findMedian"]
[[],[2],[],[3],[]]
输出:[null,null,2.00000,null,2.50000]
限制:
- 最多会对 addNum、findMedian 进行 50000 次调用。
分析:
方法:优先队列
我们可以利用优先队列来实现 大顶堆 和 小顶堆,大顶堆存放大于等于中位数的数,返回最小值,小顶堆存放小于中位数的数,返回最大值,保证大顶堆的长度永远大于等于小顶堆的长度,且不超过一。这样,当两个堆的长度一样时,就返回两数的平均值,不一样时(大顶堆大于小顶堆),就返回大顶堆的最小值。
添加方法:
- 如果大顶堆长度大于小顶堆,那么可以将新的数入栈大顶堆,再将大顶堆的数(最小值)出栈到小顶堆去。
- 如果长度相等,那么可以将新的数入栈小顶堆,再将小顶堆的数(最大值)出栈到大顶堆。
时间复杂度:查找为 O(1),添加为 O(log n)
空间复杂度:O(n)
class MedianFinder {
//定义大顶堆,小顶堆
PriorityQueue<Integer> A, B;
public MedianFinder() {
//大顶堆出栈最小值,小顶堆出栈最大值
A = new PriorityQueue<>((a, b) -> b - a);
B = new PriorityQueue<>();
}
public void addNum(int num) {
//长度相等时,入栈小顶堆,将小顶堆的最大值入栈大顶堆
if(A.size() == B.size()){
B.add(num);
A.add(B.poll());
}
//大顶堆长度大于小顶堆时,入栈大顶堆,将大顶堆的最小值入栈小顶堆
else{
A.add(num);
B.add(A.poll());
}
}
public double findMedian() {
//两堆长度相等时,返回两数的平均数,否则返回A的最小值
if(A.size() == B.size()){
return (A.peek() + B.peek()) / 2.0;
}
return A.peek();
}
}
题目来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/shu-ju-liu-zhong-de-zhong-wei-shu-lcof