- 博客(14)
- 收藏
- 关注
原创 大型古诗词数据集的分析与管理
数据集路径如下:/data/shixunfiles/54efe04023cbc923b7feabbac5583f90_1607394157288.csv。一、编程前的准备工作。
2024-11-06 11:28:06 655
原创 字体颜色、类型与大小
指定的字体都不可用时,便会使用浏览器的默认字体。在指定不同的字体类型时,通常情况下无法保证你想在你的网页上使用的字体都是可用的。它是一个绝对单位,所以在不同大小设备上,页面上的文本所计算出来的像素值都是一样的。如同印刷世界,网页中的字体类型也是丰富多样的,我们可以使用font-family 属性定义文本的字体系列。文本布局风格:用于设置文本的间距以及其他布局功能的属性,包含设置字与字之间的空间,文本如何对齐等等。字体最直观的属性之一即前景内容的颜色,我们通过 color 属性指定字体的颜色。
2024-11-01 14:32:32 1064
原创 KNN算法
可以看出宅男和文艺青年的比分是 2:2,那么可以尝试将属于宅男的 2 个样本与我的总距离和属于文艺青年的 2 个样本与我的总距离进行比较。可以看出宅男和文艺青年的比分是 2:2,那么可以尝试将属于宅男的 2 个样本与我的总距离和属于文艺青年的 2 个样本与我的总距离进行比较。当我们最近邻数为1时,中间的问号数据点(新数据点)属于红色类,而当最近邻数设为5时,也就是找出离新数据点最近的5个点,我们可以看到离新数据点最近的蓝色有3个点,红色是2个点,那么KNN算法就会把新数据点划分到蓝色类。
2024-10-31 11:34:35 971
原创 头歌实践教学平台python机器学习-决策树
鸢尾花数据集是一类多重变量分析的数据集。通过花萼长度,花萼宽度,花瓣长度,花瓣宽度4个属性预测鸢尾花卉属于(SetosaVirginica)三个种类中的哪一类。sklearn中已经提供了鸢尾花数据集的相关接口,想要使用该数据集可以使用如下代码:#加载鸢尾花数据集#X表示特征,y表示标签。
2024-10-24 11:01:44 1174
原创 HTML——表格专项与综合
这里介绍一个控制表格内文本方向的属性,本来表格有自带的属性align也是控制文本方向的,不过现在浏览器大多不支持,都用 css 的另一个属性text-align来代替。这里先创建一个两行两列的表格。请仔细阅读右侧代码,结合相关知识,在 Begin-End 区域内进行代码补充,完成一个表格的创建任务。请仔细阅读右侧代码,结合相关知识,在 Begin-End 区域内进行代码补充,完成一个表格的创建任务。本关任务:创建一个表格,设置它的宽为100%,高为200px,边框为1px,内容和效果图展示的一样。
2024-10-21 15:11:01 1142
原创 创建 a 标签
请仔细阅读右侧代码,结合相关知识,在 Begin-End 区域内进行代码补充,完成第一个标签img标签, 图片的地址是https://www.educoder.net/attachments/download/ZTZaUEp2Y0ltSElvcnBxelNJTXYyUT09,提示文字是小狗走路的创建任务。请仔细阅读右侧代码,结合相关知识,在 Begin-End 区域内进行代码补充,完成第一个a标签, 跳转的地址是https://www.educoder.net,文本内容是Educoder平台的创建任务。
2024-10-21 14:42:16 230
原创 支持向量机SVM
把每种核函数预测的PE值用字典字段名为{核函数,模型准确率,预测值},数值为相对应的{kernel,list1,list2},并把字典转化为数据框。其中核函数可以选择线性核、多项式核、高斯核、sig核,分别用`linear、poly、rbf、sigmoid`表示,默认情况下选择高斯核。其中核函数可以选择线性核、多项式核、高斯核、sig核,分别用linear、poly、rbf、sigmoid表示,默认情况下选择高斯核。根据提示,在右侧编辑器补充代码,构建支持向量机回归模型,输出其拟合优度,预测其PE值。
2024-10-21 14:27:29 837
原创 头歌实验教学平台python与机器学习-聚类
任务1:创建 KMeans 对象,令 n_clusters=2;任务描述:使用Python语言编程,使用 K-Means 聚类算法对 Iris 鸢尾花数据集进行分类,并使用外部指数对聚类结果进行分析。任务3:调用 predict 函数进行预测,预测的数据为 [0,0], [8,2], [10,3]。任务1:创建 KMeans 对象,令 n_clusters=4;任务描述:使用Python语言,对聚类结果进行性能评估。任务3:调用 predict 函数进行预测。任务3:根据公式计算 Rand 指数。
2024-10-17 11:45:37 736
原创 支持向量机模型
C越大,即对分错样本的惩罚程度越大,因此在训练样本中准确率越高,但是泛化能力降低,也就是对测试数据的分类准确率降低。★predict() 方法: 基于以上的训练,对预测样本T进行类别预测,因此只需要接收一个测试集T,该函数返回一个数组表示个测试样本的类别。★fit() 方法:用于训练 SVM,具体参数已经在定义 SVC对象的时候给出了,这时候只需要给出数据集X和X对应的标签y即可。给每个类别分别设置不同的惩罚参数 C,如果没有给,则会给所有类别都给C=1,即前面参数指出的参数 C.
2024-10-16 12:25:24 648
原创 头歌机器学习-支持向量机
本关任务:基于关卡6的数据集,构建支持向量机回归模型,输出其拟合优度,并针对测试数据AT=28.4、V=50.6、AP=1011.9、RH=80.54,预测其PE值。本关任务:基于关卡2基础上,取数据集前600条记录作为训练数据,后90条记录作为测试数据,构建支持向量机模型,输出其模型准确率和预测准确率。#在上一关基础,对经过缺失值填充、数值变量标准化后的数据集,取前600条记录作为训练数据,后90条记录作为测试数据。Y=np.load('Y.npy') #因变量,numpy数组,690个元素。
2024-10-16 11:42:07 644
原创 逻辑回归头歌
第1关:逻辑回归算法详解from sklearn.linear_model import LogisticRegression #导入逻辑回归模型# 导入数据X = X[y!=2] # 筛选数据,只选择标签为0和1y=y[y!=2]# 数据划分X_train,X_test, y_train, y_test = train_test_split(X,y) #75个数据用于训练,25个数据用于# 模型调用# 模型训练# 数据预测。
2024-10-09 11:28:22 1019 1
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人