数据结构与算法——复杂度分析(一)

本专栏是学习王争老师的《数据结构与算法之美》的学习总结,详细内容可以去学习王争老师的专栏,希望大家都能够有所收获。同时也欢迎大家能够与我一起交流探讨!

数据结构和算法本身解决的问题是“快”和“省”的问题,即**如何让代码运行得更快,如何让代码更省存储空间。**所以,代码的执行效率是算法一个非常重要的考量指标。

一、为什么需要复杂度分析?

将代码运行一遍,通过统计、监控,就能得到算法执行的时间和占用的内存大小。为什么还需要做时间、空间复杂度分析呢?并且这种时间、空间复杂度分析比实实在在跑一遍得到的数据更准确吗?

首先,这种评估算法执行效率的方法是正确的。这种方法叫事后统计法。但这种统计方法有很大的局限性。

1. 测试结果非常依赖测试环境

测试环境中硬件的不同会对测试结果有很大的影响。

例如同一段代码,分别用 Intel Core i9 处理器和 Intel Core i3 处理器来运行,自然i9处理器要比i3处理器执行的速度快很多。

在比如,原本在这台机器上a代码的执行速度比b代码要快,但换到另一台机器上时,可能会有截然相反的结果。

2. 测试结果受数据规模的影响很大

举个例子,对于同一个排序算法,待排序的有序度(即当前数组的有序排列的程度)不一样,排序的执行时间就会有很大的差别。极端情况下,如果数据已经有序,那排序算法不需要做任务操作,执行时间就会非常的短。

除此之外,如果测试数据的规模太小,测试结果可能无法真实地反映算法的性能。比如对于小规模的数据排序,插入排序可能反倒会比快速排序还要快!

所以,需要一个不用具体的测试数据来测试,就可以粗略地估计算法的执行效率的方法

二、大 O 复杂度表示法

算法的执行效率,笼统地讲就是算法代码执行的时间。复杂度的分析需要我们学会如何在不运行代码的情况下,用“肉眼”得到一段代码的执行时间。

如下代码,求求 1,2,3…n 的累加和,估算这段代码的执行时间。

int cal(int n) {
  int sum = 0;
  int i = 1;
  for (; i <= n; ++i) {
    sum = sum + i;
  }
  return sum;
}

从 CPU 的角度来看,这段代码的每一行都执行着类似的操作:读数据-运算-写数据。尽管每行代码对应的 CPU 执行的个数、执行的时间都不一样,但是,由于是粗略估计,所以可以假设每行代码执行的时间都一样,为 unit_time

在这个假设的基础之上,这段代码的总执行时间是多少呢?

上述代码中第2、3行代码分别需要1 个 unit_time 的执行时间,第 4、5 行都运行了 n 遍,所以需要 2n*unit_time 的执行时间,所以这段代码总的执行时间就是 (2n+2)*unit_time。可以看出来,所有代码的执行时间 T(n) 与每行代码的执行次数成正比

依旧假设每个语句的执行时间是 unit_time。那试着分析下面这段代码的总执行时间 T(n) :

 int cal(int n) {
   int sum = 0;
   int i = 1;
   int j = 1;
   for (; i <= n; ++i) {
     j = 1;
     for (; j <= n; ++j) {
       sum = sum +  i * j;
     }
   }
 }

上述代码中,

  • 第 2、3、4 行代码,每行都需要 1 个 unit_time 的执行时间;
  • 第 5、6 行代码循环执行了 n 遍,需要 2n * unit_time 的执行时间;
  • 第 7、8 行代码循环执行了 n^2遍,需要 2n^2 * unit_time 的执行时间。

所以,整段代码总的执行时间 T(n) = (2n^2+2n+3)*unit_time

通过上述两端代码执行时间的推到过程,可以得到一个非常重要的规律,那就是,所有代码的执行时间 T(n) 与每行代码的执行次数 f(n) 成正比。

上述规律可以总结成一个公式,即大 O:
在这里插入图片描述
其中,

  • T(n) 表示代码执行的时间;
  • n 表示数据规模的大小;
  • f(n) 表示每行代码执行的次数总和,因为这是一个关于n变量的公式,所以可以用f(n)来表示;

上述的两段代码中,第一个例子中的 T(n) = O(2n+2),第二个例子中的 T(n) = O(2n^2+2n+3)。这就是大 O 时间复杂度表示法

大 O 时间复杂度实际上并不具体表示代码真正的执行时间,而是表示代码执行时间随数据规模增长的变化趋势,所以,也叫作渐进时间复杂度(asymptotic time complexity),简称时间复杂度

当 n 很大时,公式中的低阶、常量、系数三部分并不左右增长趋势,因此可以忽略,只需要记录一个最大量级即可,即用大 O 表示上述两个例子的时间复杂度。

例如第二个例子 T(n) = O(2n^2+2n+3),低阶为2n、常数是3、系数是2,这三部分不会左右增长趋势,所以可以忽略,只需要记录一个最大量级n^2即可,即第二个例子的时间复杂度可以记为T(n) = O(n2);第一个例子可以记为T(n) = O(n)

三、时间复杂度分析

如何分析一段代码的时间复杂度?

1. 只关注循环执行次数最多的一段代码

大 O 复杂度表示 知识表示一种变化趋势。忽略公式中的常量、低阶、系数,只需要记录一个最大阶的量级即可。所以在分析一个算法、一个代码的时间复杂度时,也可以只关注循环次数最多的那一段代码。这段核心代码执行次数的n量级,就是整段代码要分析的时间复杂度。

例如前面的例子:

 int cal(int n) {
   int sum = 0;
   int i = 1;
   for (; i <= n; ++i) {
     sum = sum + i;
   }
   return sum;
 }

上述代码中,执行次数或者说是循环次数最多的是第4、5行,所以这一块的代码需要重点分析。这两行代码被执行了n次,所以总的时间复杂度就是O(n)。

2. 加法法则:总复杂度等于量级最大的那段代码的复杂度

分析下面一段代码:

int cal(int n) {
   int sum_1 = 0;
   int p = 1;
   for (; p < 100; ++p) {
     sum_1 = sum_1 + p;
   }

   int sum_2 = 0;
   int q = 1;
   for (; q < n; ++q) {
     sum_2 = sum_2 + q;
   }
 
   int sum_3 = 0;
   int i = 1;
   int j = 1;
   for (; i <= n; ++i) {
     j = 1; 
     for (; j <= n; ++j) {
       sum_3 = sum_3 +  i * j;
     }
   }
 
   return sum_1 + sum_2 + sum_3;
 }

上述代码可以分为三段,分别是求sum_1、sum_2、sum_3。分析每一段的时间复杂度:

  • sum_1:这段代码循环执行了100次,属于常量的执行,与n规模无关,无论这段代码循环 10000 次、100000 次,只要是一个已知的数,跟 n 无关,照样也是常量级的执行时间。当n无限大时,可以忽略;
  • sum_2:分析过后可以知道这段代码的时间复杂度为O(n);
  • sum_3:分析过后可以知道这段代码的时间复杂度为O(n^2);

综合三段分析,其中最大量级为O(n^2),因此整段代码的时间复杂度为O(n2)。

即,总的时间复杂度就等于量级最大的那段代码的时间复杂度。将该规律抽象成公式为:

  • 如果 T1(n) = O(f(n))T2(n) = O(g(n));那么 T(n) = T1(n) + T2(n) = max(O(f(n)), O(g(n))) = O(max(f(n), g(n))).

3. 乘法法则:嵌套代码的复杂度等于嵌套内外代码复杂度的乘积

如果 T1(n) = O(f(n))T2(n) = O(g(n));那么 T(n) = T1(n) * T2(n) = O(f(n)) * O(g(n)) = O(f(n) * g(n))

例如分析如下代码:

int cal(int n) {
   int ret = 0; 
   int i = 1;
   for (; i < n; ++i) {
     ret = ret + f(i);
   } 
 } 
 
 int f(int n) {
  int sum = 0;
  int i = 1;
  for (; i < n; ++i) {
    sum = sum + i;
  } 
  return sum;
 }

单独看cal()函数,假设f()只是一个普通操作,则cal()函数的时间复杂度为T1(n) = O(n)。但f()是一个带有for循环的函数,它的时间复杂度是T2(n) = O(n)

所以,整个cal()函数的时间复杂度为T(n) = T1(n) * T2(n) = O(n*n) = O(n2)

时间复杂度的分析并不需要刻意的去记忆,只需要多看案例,复杂度分析关键在于“熟练”,多看案例多分析,就能熟练掌握。

四、几种常见时间复杂度实例分析

常见的时间复杂度量级(按数量级递增):

阶数时间复杂度
常量阶O(1)
对数阶O(logn)
线性阶O(n)
线性对数阶O(nlogn)
平方阶、立方阶、k次方阶O(n^k)
指数阶O(2^n)
阶乘阶O(n!)

在这里插入图片描述

上述的复杂度量级,可以粗略的分为两类,多项式量级和非多项式量级。其中非多项式量级只有两个:O(2^n)、O(n!)。

当数据规模n越来越大,非多项式量级算法的执行时间会急剧增加,求解问题的执行时间会无限增长。所以,非多项式时间复杂度的算法其实是非常低效的算法。

分析常见的多项式时间复杂度

1. O(1)

O(1) 是常量级时间复杂度的一种表示方法,并不是指只执行了一行代码

比如这段代码,即便有 3 行,它的时间复杂度也是 O(1),而不是 O(3)。

 int i = 8;
 int j = 6;
 int sum = i + j;

只要代码的执行时间不随 n 的增大而增长,这种代码的时间复杂度都记作O(1)。即一般情况下,只要算法中不存在循环语句、递归语句,即使有成千上万行的代码,其时间复杂度也是Ο(1)

2. O(logn)、O(nlogn)

对数阶时间复杂度非常常见,同时也是最难分析的一种时间复杂度。

例如如下代码:

 i=1;
 while (i <= n)  {
   i = i * 2;
 }

上述代码中第3行是循环执行的最多,计算该行代码被执行多少次即可知道整段代码的时间复杂度。

代码中i的值从1开始取,每次循环 i * 2。当 i 大于 n 时结束循环,即变量 i 的取值就是一个等比数列。
在这里插入图片描述
上述中x就是代码执行的次数,通过 2x=n 求解 x 可以得到 x = log2(n),所以,这段代码的时间复杂度就是 O(log2(n))。

 i=1;
 while (i <= n)  {
   i = i * 3;
 }

又刚刚的思路可以知道上述代码的时间复杂度为O(log3(n))。

实际上无论是以 2 为底、以 3 为底,还是以 10 为底,我们可以把所有对数阶的时间复杂度都记为 O(logn)。因为对数之间是可以互相转换的,log3(n) 就等于 log3(2) * log2(n),所以 O(log3(n)) = O(C * log2(n)),其中 C=log3(2) 是一个常量。

基于我们前面的一个理论:在采用大 O 标记复杂度的时候,可以忽略系数,即 O(Cf(n)) = O(f(n))。所以,O(log2n) 就等于 O(log3n)。因此,在对数阶时间复杂度的表示方法里,我们忽略对数的“底”,统一表示为 O(logn)

而O(nlogn)实际上就是上述中说道的乘法法则得到的。如果一段代码的时间复杂度是 O(logn),我们循环执行 n 遍,时间复杂度就是 O(nlogn) 了。而且,O(nlogn) 也是一种非常常见的算法时间复杂度。比如,归并排序、快速排序的时间复杂度都是 O(nlogn)。

3. O(m+n)、O(m*n)

分析如下代码:

int cal(int m, int n) {
  int sum_1 = 0;
  int i = 1;
  for (; i < m; ++i) {
    sum_1 = sum_1 + i;
  }

  int sum_2 = 0;
  int j = 1;
  for (; j < n; ++j) {
    sum_2 = sum_2 + j;
  }

  return sum_1 + sum_2;
}

分析上述代码可知,m 和 n 表示两个数据规模,并且无法评估 m 和 n 谁的量级大,所以在表示复杂度的时候,不能简单地利用加法法则去省略掉其中一个。所以,上面代码的时间复杂度就是 O(m+n)。

针对无法评估 m 和 n 谁的量级大这种情况,原来的加法法则就不正确了,我们需要将加法规则改为:T1(m) + T2(n) = O(f(m) + g(n))。但是乘法法则继续有效:T1(m) * T2(n) = O(f(m) * f(n))

五、空间复杂度分析

前面说到,时间复杂度的全称是渐进时间复杂度,表示算法的执行时间与数据规模之间的增长关系

类比一下,空间复杂度全称就是渐进空间复杂度(asymptotic space complexity),表示算法的存储空间与数据规模之间的增长关系

例如分析如下代码的空间复杂度:

void print(int n) {
  int i = 0;
  int[] a = new int[n];
  for (i; i <n; ++i) {
    a[i] = i * i;
  }

  for (i = n-1; i >= 0; --i) {
    print out a[i]
  }
}

上述代码第2行中,申请了一个空间存储变量 i,但是它是常量阶的,跟数据规模 n 没有关系,所以我们可以忽略。

第 3 行申请了一个大小为 n 的 int 类型数组,除此之外,剩下的代码都没有占用更多的空间,所以整段代码的空间复杂度就是 O(n)。

空间复杂度分析比时间复杂度分析要简单很多。所以,对于空间复杂度来说比较能直观的看出来。

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值