今天主要分享一下自己的算法以及java面试题的理解
算法
二分查找
这个二分查找不难,但是理解起来可能不快
其实说白了,二分查找就是不断的/2,在每个/2后的区间查元素,如果有就查出,没有就判定这个元素在哪个区间,通常我们都会取中间的一个元素去比较,目标值比中间的元素大说明这个目标在中间值右边,这时候就要让左边的index变成中间元素的下标+1;反之,如果目标值比中间的元素小,说明这个目标在中间值左边,这个时候就要让右边的index变成中间元素的下标-1.
题目1
给定一个 n 个元素有序的(升序)整型数组 nums 和一个目标值 target ,写一个函数搜索 nums 中的 target,如果目标值存在返回下标,否则返回 -1。
class Solution {
public int search(int[] nums, int target) {
int left=0;
int right=nums.length-1;
if(target < nums[0] || target > nums[right])
{
return -1;
}
while(left<=right)
{ int middle = left + (right-left)/2;
if(nums[middle] == target)
{
return middle;
}
else if(nums[middle]>target)
{
right = middle-1;
}
else{
left = middle +1;
}
}
return -1;
}
}
题目2
给定一个排序数组和一个目标值,在数组中找到目标值,并返回其索引。如果目标值不存在于数组中,返回它将会被按顺序插入的位置。
请必须使用时间复杂度为 O(log n) 的算法。
class Solution {
public int searchInsert(int[] nums, int target) {
int left=0,right=nums.length-1;
while(left<=right)
{
int middle = left + (right -left)/2;
if(nums[middle] == target)
{
return middle;
}
else if(nums[middle] > target)
{
right = middle -1;
}
else{
left = middle +1 ;
}
}
return right+1;
}
}
这个题我做的时候其实很懵,但是细细想是简单的,不就是一个二分,然后改一下返回值吗?
原因在于,如果这个目标值在这个数组里,那么就是二分法查值,返回就可以了;但是如果目标值不在数组中,你还是使用而非二分法查询,那么无论是在左边还是右边,你查值区间都会无限接近这个目标值。
输入: nums = [1,3,5,6], target = 2
输出: 1
以这个为例,2在第一次查询过后,right就更新为middle-1了,而middle是1,-1后变成了0,这时候已经跳出while,那么此时right为0,返回right+1就是目标的位置。
你可以理解为:假如这个目标存在,那么返回的就是这个目标的位置,但是你题中描述的并不存在,但是要的却是这个目标如果在的位置。
题目3
给你一个非负整数 x ,计算并返回 x 的 算术平方根 。
由于返回类型是整数,结果只保留 整数部分 ,小数部分将被 舍去 。
class Solution {
public int mySqrt(int x) {
int left =0,right = x,ans=-1;
while(left<=right)
{
int middle = left + (right -left)/2;
if((long)middle*middle <= x)
{ ans = middle;
left = middle +1;
}
else{
right =middle-1;
}
}
return ans;
}
}
我是这么写的,我一开始的时候犯了错,把else去掉了,结果是错的。
这是因为left和right都在更新,比如你输进去8,它的middle是4,而4的平方是16,这个时候大于8,所以还是要把right更新使得变小一点。
题目4
给你一个正整数 num 。如果 num 是一个完全平方数,则返回 true ,否则返回 false 。
完全平方数 是一个可以写成某个整数的平方的整数。换句话说,它可以写成某个整数和自身的乘积。
不能使用任何内置的库函数,如 sqrt 。
class Solution {
public boolean isPerfectSquare(int num) {
int left=0,right = num;
while(left<=right)
{
int mid = left+(right-left)/2;
if((long)mid*mid == num)
{
return true;
}
else if((long)mid*mid > num)
{
right = mid -1;
}
else
{
left = mid +1;
}
}
return false;
}
}
这个题我第二次写又犯错了,因为没有加(long)造成了整形溢出,溢出后其实是可能会变成负数,这样的话是很灾难的!