Business Statistics
文章平均质量分 90
elsie77
这个作者很懒,什么都没留下…
展开
-
LDA、QDA和朴素贝叶斯
文章目录一、Linear Discriminant Analysis(LDA)1. 贝叶斯定理2. LDA (p = 1)3. LDA(p > 1)4. 结果衡量——混淆矩阵、ROC、AUC二、LDA, QDA & Naive Bayes1. QDA2. Naive Bayes 朴素贝叶斯3、总结与比较假设适用条件通俗来说,Discriminant Analysis就是通过分别对每个分类中的X的分布进行建模,再通过贝叶斯定理得到Pr(Y∣X)Pr(Y|X)Pr(Y∣X)。当我们假设每个原创 2021-11-07 18:11:59 · 3492 阅读 · 1 评论 -
T检验、F检验、Z检验、卡方检验
文章目录一、假设检验的四种方法二、Z检验1. Z分布2.适用条件3. 用途三、T检验1. T分布2.适用条件3. 用途四、F检验1. F分布2.适用条件3. 用途五、卡方检验1. 卡方分布2.适用条件3. 用途一、假设检验的四种方法1.有关平均值参数u的假设检验(Z检验、T检验)根据总体方差是否已知及样本容量大小,分为T检验与Z检验,如下图:2.有关参数方差σ2的假设检验(F检验)F检验主要用于检验两个分布的方差是否相同3.检验两个或多个变量之间是否关联(卡方检验)卡方检验属于非参数检验原创 2021-11-05 00:18:05 · 33558 阅读 · 2 评论 -
线性回归假设条件及残差检验
文章目录一、线性回归假设条件(LINE)二、 残差分析1. 线性检验2. 正态性检验3. 独立性检验4. 方差齐性检验5.其他残差图一、线性回归假设条件(LINE)线性(Linear)自变量与因变量之间存在线性关系正态性(Normal)残差 ϵ\epsilonϵ 服从正态分布N(0, σ2\sigma^2σ2) 。其方差 σ2\sigma^2σ2 = var ( ϵi\epsilon_iϵi ) 反映了回归模型的精度, σ2\sigma^2σ2 越小,用所得到回归模型预测y的精确度愈高独原创 2021-11-02 13:52:33 · 9564 阅读 · 0 评论 -
模型选择——岭回归和Lasso回归
系列文章目录提示:这里可以添加系列文章的所有文章的目录,目录需要自己手动添加例如:第一章 Python 机器学习入门之pandas的使用提示:写完文章后,目录可以自动生成,如何生成可参考右边的帮助文档文章目录系列文章目录前言一、pandas是什么?二、使用步骤1.引入库2.读入数据总结前言模型选择方法有三种,分别是:子集选择法(subset selection), 收缩法(Shrinkage)和降维法(Dimension Reduction)。之前已经介绍过子集选择法,这篇文章主要介绍模原创 2021-10-19 20:25:53 · 2978 阅读 · 0 评论 -
模型选择——子集选择法(Subset Selection)
这里写自定义目录标题欢迎使用Markdown编辑器新的改变功能快捷键合理的创建标题,有助于目录的生成如何改变文本的样式插入链接与图片如何插入一段漂亮的代码片生成一个适合你的列表创建一个表格设定内容居中、居左、居右SmartyPants创建一个自定义列表如何创建一个注脚注释也是必不可少的KaTeX数学公式新的甘特图功能,丰富你的文章UML 图表FLowchart流程图导出与导入导出导入欢迎使用Markdown编辑器你好! 这是你第一次使用 Markdown编辑器 所展示的欢迎页。如果你想学习如何使用Mar原创 2021-10-16 02:25:53 · 8602 阅读 · 1 评论