SPFA算法:找单源点最短距离

SPFA算法:

        Dijkstra算法的改进版,整体思想同Dijkstra算法一致。

1、保存一个带权有向图

        使用链式前向星保存一个有向图

class Edge
{
public:
	int to;
	int weight;
	int next;
};

Edge e[maxn << 1];

void InsertEdge(int u, int v, int w) 
{
	e[++cnt].to = v;
	e[cnt].next = head[u];
	e[cnt].weight = w;
	head[u] = cnt;
}

void CreateGraph()
{
	int u, v, w;
	cout << "请输入结点数:" << endl;
	cin >> n;
	cout << "请输入边数:" << endl;
	cin >> m;
	cout << "请依次输入每条边边的两个顶点和权值:" << endl;
	for (int i = 1; i <= m; i++)
	{
		cin >> u >> v >> w;
		InsertEdge(u, v, w);
	}
}

2、初始化

        建立队列用于存放结点号,选择一个结点为源点,将其距离初始化并入队;

        建立一个访问标记数组用于确定结点是否在队列中;建立距离数组,存放结点的最短路径。

queue<int>q;
	memset(vis, false, sizeof(vis));
	memset(dis, 0x3f, sizeof(dis));
	vis[u] = 1;
	dis[u] = 0;
	q.push(u);

3、执行算法

        取走队头元素并解除标记,遍历其邻接点,更新最小距离后,若邻接点不在队列中,将其标记并入队;

        循环执行,直到队列为空。

while (!q.empty()) 
	{
		int x = q.front();
		q.pop();
		vis[x] = 0;
		for (int i = head[x]; i; i = e[i].next)
		{
			int v = e[i].to;
			if (dis[v] > dis[x] + e[i].weight) 
			{
				dis[v] = dis[x] + e[i].weight;
				if (vis[v])
				{
					continue;
				}
					vis[v] = true;
					q.push(v);
			}
		}
	}

整体代码实现:

#include<iostream>
#include<queue>
using namespace std;
#define maxn 100
int n, m, cnt;
int head[maxn], dis[maxn];
bool vis[maxn];//标记是否在队列中 

class Edge
{
public:
	int to;
	int weight;
	int next;
};

Edge e[maxn << 1];

void InsertEdge(int u, int v, int w) 
{
	e[++cnt].to = v;
	e[cnt].next = head[u];
	e[cnt].weight = w;
	head[u] = cnt;
}

void CreateGraph()
{
	int u, v, w;
	cout << "请输入结点数:" << endl;
	cin >> n;
	cout << "请输入边数:" << endl;
	cin >> m;
	cout << "请依次输入每条边边的两个顶点和权值:" << endl;
	for (int i = 1; i <= m; i++)
	{
		cin >> u >> v >> w;
		InsertEdge(u, v, w);
	}
}

void SPFA(int u) 
{
	queue<int>q;
	memset(vis, false, sizeof(vis));
	memset(dis, 0x3f, sizeof(dis));
	vis[u] = 1;
	dis[u] = 0;
	q.push(u);
	while (!q.empty()) 
	{
		int x = q.front();
		q.pop();
		vis[x] = 0;
		for (int i = head[x]; i; i = e[i].next)
		{
			int v = e[i].to;
			if (dis[v] > dis[x] + e[i].weight) 
			{
				dis[v] = dis[x] + e[i].weight;
				if (vis[v])
				{
					continue;
				}
					vis[v] = true;
					q.push(v);
			}
		}
	}
}

void Print() 
{
	for (int i = 1; i <= n; i++)
	{
		cout << dis[i] << " ";
	}
	cout << endl;
}

int main()
{
	CreateGraph();
	SPFA(1);
    Print();
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

可惜浅灰

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值