题目描述:
一个无环的有向图称为无环图(Directed Acyclic Graph),简称DAG图。
AOE(Activity On Edge)网:顾名思义,用边表示活动的网,当然它也是DAG。与AOV不同,活动都表示在了边上,如下图所示:

如上所示,共有11项活动(11条边),9个事件(9个顶点)。整个工程只有一个开始点和一个完成点。即只有一个入度为零的点(源点)和只有一个出度为零的点(汇点)。
关键路径:是从开始点到完成点的最长路径的长度。路径的长度是边上活动耗费的时间。如上图所示,1 到2 到 5到7到9是关键路径(关键路径不止一条,请输出字典序最小的),权值的和为18。
输入:
这里有多组数据,保证不超过10组,保证只有一个源点和汇点。输入一个顶点数n(2<=n<=10000),边数m(1<=m <=50000),接下来m行,输入起点sv,终点ev,权值w(1<=sv,ev<=n,sv != ev,1<=w <=20)。数据保证图连通。
输出:
关键路径的权值和,并且从源点输出关键路径上的路径(如果有多条,请输出字典序最小的)。
解题思路:
关键路径就是从源点到汇点权值最大的那一条路径,可以根据SPFA算法求得,由于关键路径不止一条,要求输出字典序最小,通过更改SPFA算法中的更新条件可以求得。
解题步骤:

本文介绍了如何利用SPFA算法在无环有向图(DAG)的AOE网中找到从源点到汇点的最长关键路径,包括数据结构处理、关键路径查找和字典序最小路径输出。通过修改SPFA的更新规则,解决了关键路径多条的问题。
最低0.47元/天 解锁文章
432

被折叠的 条评论
为什么被折叠?



