- 博客(71)
- 收藏
- 关注
原创 地震勘探原理---地震预处理
3.1 为什么说要对数据进行振幅补偿?具体来说,地震波在传播过程中会遇到各种各样的地质条件,例如不同的岩层、土壤、水层等,这些介质的密度、速度等特性不同,因而对地震波的能量消耗也有所不同。在传播距离较远的情况下,能量损失可能会导致接收到的地震信号振幅变小。相反,在传播距离较近的情况下,能量损失可能较小,导致接收到的地震信号振幅变大。如果不对数据进行振幅补偿,这种振幅不均衡会导致地震数据分析和解释的误差和不确定性增加,可能产生错误的结论。
2023-12-18 14:53:39 1005
原创 做完这些_成为机器学习方面的专家
3. 对于机器学习的理论板块, 推荐b站up主---啥都会一点的研究生, 里面有一个吴恩达最新版的教学视频, 欢迎学习. 接着为了继续学习理论板块, 推荐看几本机器学习的书籍, 网上资源很多内容应该都差不多, 主要是更深层理解理论.4. 接着学习python基本库numpy, pandas, matplotlib库. ''啥都会一点的研究生''上面也有对应的视频. 对应结合菜鸟教程网站的知识学习更佳.除此之外, 还有李宏毅的机器学习视频, 浙大老师的视频等等(太多了我没看QAQ)
2023-11-18 21:23:12 169
原创 论文写作总结
摘要是论文的灵魂。简单来说,就是论文留主干去枝叶,提取论文主要信息。一般包括作者观点、主要内容、研究成功和自己的见解等。一定要用简单、明确、易懂的语句表达。我们通常写下大约十个句子如下。1)问题及其重要性:这句话可以确定问题的领域,解释主要概念或问题的重要性。2)现有工作:该句描述解决问题的最新方法。3)现有工作的限制(可选):这句话常以 “However” 开头,但是切记批评不要太强烈,要保证自己的方法能把坑填上。
2023-11-01 22:20:26 390
原创 全波形反演培训的思考与总结
这里补充说明原文章用的数据大小是(32,1000,6),但是张星移师兄培训的数据集大小是(70,1000,6),以后者为准。进入两个方向同时降维,将大小(70,63,128)的图片通过卷积降维到(35,32,128)将大小(70,1000,6)的图片通过一批32卷积降维到(70,500,32)将大小(70,500,32)的图片通过卷积降维到(70,250,64)将大小(70,250,64)的图片通过卷积降维到(70,125,64)将大小(70,125,64)的图片通过卷积降维到(70,63,128)
2023-10-20 22:38:51 503
原创 Deep Learning for Geophysics综述阅读(未完)
可以理解为是一种机器学习的分布式训练方法,传统的机器学习模型需要将所有数据集中到一个中央服务器进行训练,但在一些场景中,由于数据隐私、网络带宽或数据存储等问题,集中式训练可能面临困难。近年来,深度学习作为一种新的数据驱动技术,在地球物理学界引起了越来越多的关注,带来了许多机遇和挑战。简单来讲:这篇文章是一个关于深度学习和地球科学领域的综述,对更多的地球物理研究人员、学生和教师了解和使用深度学习技术铺平道路。为地球物理学的初学者和感兴趣的读者提供了一个编码教程和快速探索DL的技巧总结。
2023-10-20 16:14:54 526
原创 全波形反演的目标和技术
通过这种共享特征的方式,模型可以更好地泛化到新的样本,尤其是在数据有限的情况下,多任务学习可以利用任务之间的相互补充和共享信息来增强学习效果。课程学习的理念是通过逐渐引入难度递增的样本,让模型从容易的样本开始学习,逐渐过渡到难度更高的样本,在训练过程中逐步增加模型的能力。迁移学习的优势在于可以充分利用源任务的数据和知识,减少目标任务的数据需求,提高模型的泛化能力和效果。迁移学习的基本思想是,通过将源任务的知识或特征迁移到目标任务中,可以加速目标任务的学习过程,提高模型的泛化能力和性能。
2023-10-16 15:27:36 761
原创 AlexNet论文阅读
以往在CNN卷积神经网络里面见到的最多的激活函数是sigmoid 函数,但是出于对收敛速度的考虑,在这里作者却用的是ReLU函数.因为这些非饱和函数的收敛速度比饱和函数的收敛速度快得多.对于下图2,它显示了针对特定四层卷积网络,在CIFAR-10数据集上达到25%训练误差所需的迭代次数。这张图表明,如果我们使用传统的饱和神经元模型,我们将无法对如此大的神经网络进行实验。开始之前的简介:这篇论文是王林蓉师姐推荐给我看的第一篇入门级别的cv领域的论文,也算是我入手研究生阶段的第一篇论文。4.2 多GPU训练。
2023-10-16 11:39:41 196
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人